scholarly journals A Brief Review on Dye Sensitized Solar Cells

Author(s):  
Udayagiri R Bhargava

Photo-voltaic (PV) devices such as a Dye-Sensitized Solar Cell (DSSC) is a source of energy that converts incident photon or solar radiation to usable electricity. DSSCs are fast becoming a viable and interesting alternative to the traditional inorganic photo-voltaic devices to address the demerits of the inorganic PV devices like the use of expensive noble metals and high-cost chemical synthesis processes. A DSSC functions with two main components, i.e., a photo-sensitizer that absorbs incident light and a semiconductor onto which it is adhered to and a conductive glass housing such as Florine-doped Tin Oxide (FTO) or Indium-doped Tin Oxide (ITO), between which the sensitizer, semiconductor and an electrolyte are sandwiched. The semiconductor is preferably a wide-band semiconductor, of which the commonly used semiconductors in a DSSC are made of a nanoparticle layer of Titanium dioxide (TiO2), Zinc oxide (ZnO) and Tin oxide (SnO2). The utility of these solar cells with a diverse number of natural photo-sensitizers for use as an alternative PV device is described. Currently, there are an abundance of natural sources that could be used to obtain photo-sensitizers from, such as, micro and macro algae, plants, bacteria, etc. leading to increased importance in renewable energy sector and has gained traction to be a viable renewable energy resource. In addition to the functioning of an organic DSSC, various characteristics of the pigments used as photo-sensitizers are described here. Patents filed regarding eco-friendly and natural Dye-Sensitized Solar Cells have been increasing as of late and holds substantial promise.

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Divya Jyoti

AbstractA four phase model air/glass/indium doped tin oxide/TiO2 has been studied by modifying Rouard’s model to calculate the final transmittance from TiO2 layer to be used as photoanode in dye-sensitized solar cells. An optical simulation for the reflectance and transmittance has been executed for the constructed nanocrystalline TiO2 films. To validate the theoretical results TiO2 film has been deposited onto indium doped tin oxide (ITO) layer by sol-gel dip coating technique. It has been found that the incident light suffers losses by 5-15% on passage through TiO2 coated ITO layer. Experimentally it has been observed on the basis of efficiency value that meso-nano combination is the best candidate to be used as photoanode in a dye-sensitize solar cell.


Nanoscale ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 4987-5034 ◽  
Author(s):  
Jasmin S. Shaikh ◽  
Navajsharif S. Shaikh ◽  
Sawanta S. Mali ◽  
Jyoti V. Patil ◽  
Krishna K. Pawar ◽  
...  

Dye-sensitized solar cells (DSSCs) have aroused great interest as a potential renewable energy resource to fulfill the 21st century global energy demand.


2020 ◽  
Vol 15 (3) ◽  
pp. 216-221
Author(s):  
Arbin Maharjan

Dye-sensitized solar cells (DSSCs) have attracted many researchers because it has potential to supplement and compete with other solar cell technologies like Silicon (Si) and Cadmium Telluride (CdTe). The fabrication of DSSCs requires a photo electrode and a counter electrode of transparent and conducting nature. The commercial DSSCs uses electrodes of fluorine doped tin oxide (FTO) glass substrates. These electrodes are expensive and hence, possible alternative materials that are cheaper and that would provide better performance under similar environmental condition should be explored. In this paper, titanium (Ti)-coated glass substrates were prepared and then used to prepare electrodes for fabricating DSSCs. Similarly, DSSCs were fabricated using electrodes of conventional FTO-coated glass substrates. Performance characteristics like cell efficiency (η%), fill-factor (FF), short circuit current density (JSC) and open circuit voltage (VOC) of both fabricated DSSCs were obtained using their respective J-V characteristic curves under similar illumination of 100 mW/cm2 and with comparable transmittance under the visible transmission spectrum of 300-850 nm. The obtained results showed that DSSCs prepared using electrodes of FTO coated glass substrates have 1.557 times better cell efficiency and 2.172 times better fill factor than that of DSSCs fabricated using electrodes of Ti-coated glass substrates.


2019 ◽  
Vol >15 (5) ◽  
pp. 501-505 ◽  
Author(s):  
Mohammad Rezaul Karim ◽  
Muhammad Ali Shar ◽  
Syed Abdullah

Background: Energy crisis is a vital issue worldwide and it will be increased tremendously in future. Alternative energy sources have been sought for the betterment of the future world. Solar energy is an alternative energy resource with plenty of opportunities. To make user- friendly and cheaper solar cells, dye-sensitized solar cells are tried to develop in this aspect. Objective: Single dye is not good enough to capture a wide range of solar light. The blending of different dyes is an alternative approach to harvest a wider range of solar lights on solar cells. Here, N719 and IR dyes were utilized to get UV-VIS and NIR ranges of solar lights in dye-sensitized solar cells. Methods: Dye-sensitized solar cells (DSSCs) were fabricated by using mixed dyes with various combinations of N719 (dye A) and IR dyes (dye B). The mixed dyes solutions were adsorbed on titanium dioxide (TiO2) and revealed significant light absorption & photosensitization compared with the individual dye solutions. The DSSCs fabricated with more percentage of IR dyes exhibited the best sensitization and broader spectrum. Results: The light absorption spectrum of the blended dyes solutions was confined peaks resultant of both N719 and IR dyes. The maximum efficiencies of 7.91% and 7.77% were obtained with 70% and 80% of IR dyes, respectively. Conclusion: Both N719 and IR mixed dyes solar cells were fabricated successfully for the first time. The relevant reasons behind the working of N719 and IR mixed dyes solar cells have been discussed. It was also noted that only IR dyes sensitized cells did not function under the simulated sunlight.


2014 ◽  
Vol 118 (30) ◽  
pp. 16510-16517 ◽  
Author(s):  
Hwaseok Chae ◽  
Donghoon Song ◽  
Yong-Gun Lee ◽  
Taewook Son ◽  
Woohyung Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document