Review of Natural Fibre Reinforced Polymer Composite and Textile Fibre Composite for Sustainable Construction

Abstract: In today's world, natural fibre reinforced polymer composites (NFRPC) are becoming increasingly popular because to their eco-friendliness, lightweight superiority in life cycles, biodegradability, low cost and good mechanical quality. In a number of engineering applications NFRPCs are widely used and research in that field is progressing quickly. Due to natural fibres, researchers face various challenges during NFPRC construction and deployment (NFs). Among the challenges are fibre quality, thermal stability, water absorption and incompatibility with polymer matrices. Steel strengthening is continuously required to fulfil the tensile strength and ductility requirements of concrete buildings, because the most often used building medium on the globe is concrete. Furthermore, corrosion of steel reinforcement is one of the most severe issues facing civil engineers today; hence promoting sustainable concrete as well as structures to reduce their negative influence on the environment is vital. The development of new environmental materials to replace the bars of steel as a reinforcement of the concrete structure is a key step towards assuring the long-term durability of the cement and construction. According to this evaluation document, strengthened concrete constructions create a wide range of environmental concerns including significant CO2 and other greenhouse gas emissions. Keywords: Environmentally friendly materials, Natural fibre reinforced polymer composite, textile fibre composite, Sustainability, composite materials

Author(s):  
NurFadhlin Sakina Jamil ◽  
◽  
Mazatusziha Ahmad ◽  
Ahmad Hakiim Jamaluddin ◽  
◽  
...  

Biodegradable foam packaging was chosen as an alternative food packaging material due to non-toxic and produced from renewable sources. Researchers has turned to incorporate natural fibre to enhance the mechanical properties of polymer composite foam. In this study, the objective is to identify the studies which investigated on the tensile properties of natural fiber incorporated polymer composite foam and analyzed the effect of natural fibre content and size on tensile properties. Further correlation between the natural fibre content and size on tensile properties of composite polymer foam was conducted. The studies on the natural fibre incorporated polymer composite was identify via PRISMA method. The effect of natural fibre content and natural fibre size on tensile properties of polymer composite foam were analyzed in terms of qualitative analysis via systematic review. This study employs systematic review method on the existing literature. This study has utilized supplementary databases such as SAGE Journals, ScienceDirect, Taylor & Francis, Emerald Insight, ERIC ProQuest, SpringerLink and IEEE Xplore to cater all the possible relevant literature for a comprehensive review. The systematic review method comprised of the steps that explain on the review process in the sequence of the (identification, screening, eligibility), data analysis and data abstraction. From the article used in this systematic review, most of the result shown the increased tensile properties on natural fibre reinforced polymer composite foams. The study by Texteira et al. (2014) shows that the softwood fibre with 33% of PLA loading has the highest elongation at break, and highest natural fibre size (2470 µm). While the study by Long et al. (2019) has the highest tensile strength with 30% of ABF fibre content. The composition of 20 wt% BF with 80 wt% PLA composites were concluded to have the optimum tensile properties


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Tara Sen ◽  
H. N. Jagannatha Reddy

The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.


2017 ◽  
Vol 8 (2) ◽  
pp. 71-78 ◽  
Author(s):  
Savita Dixit ◽  
Ritesh Goel ◽  
Akash Dubey ◽  
Prince Raj Shivhare ◽  
Tanmay Bhalavi

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
C. H. Lee ◽  
Mohd Sapuan Salit ◽  
M. R. Hassan

Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC) lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP) composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR) filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA), different scanning calorimetric (DSC), and dynamic mechanical analysis (DMA) are the three most famous methods used to investigate the fire behaviour of composites.


2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document