scholarly journals Generating faces From the Sketch Using GAN

Author(s):  
Ms. Faseela Kathun. C

Abstract: In most cases, sketch images simply show basic profile details and do not include facial detail. As a result, precisely generating facial features is difficult. Using the created adversarial network and attributes, we propose an image translation network. A feature extracting network and a down-sampling up-sampling network make up the generator network. There is a generator and a discriminator in GANs. The Generator creates fake data samples (images, audio, etc.) in intended to mislead the Discriminator. On the other hand, the Discriminator attempts to distinguish between the real and fake sample Keywords: Deep Learning, Generative Adversarial Networks, Image Translation, face generation, skip-connection.

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3269 ◽  
Author(s):  
Hongmin Gao ◽  
Dan Yao ◽  
Mingxia Wang ◽  
Chenming Li ◽  
Haiyun Liu ◽  
...  

Hyperspectral remote sensing images (HSIs) have great research and application value. At present, deep learning has become an important method for studying image processing. The Generative Adversarial Network (GAN) model is a typical network of deep learning developed in recent years and the GAN model can also be used to classify HSIs. However, there are still some problems in the classification of HSIs. On the one hand, due to the existence of different objects with the same spectrum phenomenon, if only according to the original GAN model to generate samples from spectral samples, it will produce the wrong detailed characteristic information. On the other hand, the gradient disappears in the original GAN model and the scoring ability of a single discriminator limits the quality of the generated samples. In order to solve the above problems, we introduce the scoring mechanism of multi-discriminator collaboration and complete semi-supervised classification on three hyperspectral data sets. Compared with the original GAN model with a single discriminator, the adjusted criterion is more rigorous and accurate and the generated samples can show more accurate characteristics. Aiming at the pattern collapse and diversity deficiency of the original GAN generated by single discriminator, this paper proposes a multi-discriminator generative adversarial networks (MDGANs) and studies the influence of the number of discriminators on the classification results. The experimental results show that the introduction of multi-discriminator improves the judgment ability of the model, ensures the effect of generating samples, solves the problem of noise in generating spectral samples and can improve the classification effect of HSIs. At the same time, the number of discriminators has different effects on different data sets.


Generative Adversarial Networks have gained prominence in a short span of time as they can synthesize images from latent noise by minimizing the adversarial cost function. New variants of GANs have been developed to perform specific tasks using state-of-the-art GAN models, like image translation, single image super resolution, segmentation, classification, style transfer etc. However, a combination of two GANs to perform two different applications in one model has been sparsely explored. Hence, this paper concatenates two GANs and aims to perform Image Translation using Cycle GAN model on bird images and improve their resolution using SRGAN. During the extensive survey, it is observed that most of the deep learning databases on Aves were built using the new world species (i.e. species found in North America). Hence, to bridge this gap, a new Ave database, 'Common Birds of North - Western India' (CBNWI-50), is also proposed in this work.


Author(s):  
Chaudhary Sarimurrab, Ankita Kesari Naman and Sudha Narang

The Generative Models have gained considerable attention in the field of unsupervised learning via a new and practical framework called Generative Adversarial Networks (GAN) due to its outstanding data generation capability. Many models of GAN have proposed, and several practical applications emerged in various domains of computer vision and machine learning. Despite GAN's excellent success, there are still obstacles to stable training. In this model, we aim to generate human faces through un-labelled data via the help of Deep Convolutional Generative Adversarial Networks. The applications for generating faces are vast in the field of image processing, entertainment, and other such industries. Our resulting model is successfully able to generate human faces from the given un-labelled data and random noise.


Author(s):  
Tao Zhang ◽  
Long Yu ◽  
Shengwei Tian

In this paper, we presents an apporch for real-world human face close-up images cartoonization. We use generative adversarial network combined with an attention mechanism to convert real-world face pictures and cartoon-style images as unpaired data sets. At present, the image-to-image translation model has been able to successfully transfer style and content. However, some problems still exist in the task of cartoonizing human faces:Hunman face has many details, and the content of the image is easy to lose details after the image is translated. the quality of the image generated by the model is defective. The model in this paper uses the generative adversarial network combined with the attention mechanism, and proposes a new generative adversarial network combined with the attention mechanism to deal with these problems. The channel attention mechanism is embedded between the upper and lower sampling layers of the generator network, to avoid increasing the complexity of the model while conveying the complete details of the underlying information. After comparing the experimental results of FID, PSNR, MSE three indicators and the size of the model parameters, the new model network proposed in this paper avoids the complexity of the model while achieving a good balance in the conversion task of style and content.


2021 ◽  
Vol 2021 (2) ◽  
pp. 305-322
Author(s):  
Se Eun Oh ◽  
Nate Mathews ◽  
Mohammad Saidur Rahman ◽  
Matthew Wright ◽  
Nicholas Hopper

Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site.


Author(s):  
Amey Thakur

Abstract: Deep learning's breakthrough in the field of artificial intelligence has resulted in the creation of a slew of deep learning models. One of these is the Generative Adversarial Network, which has only recently emerged. The goal of GAN is to use unsupervised learning to analyse the distribution of data and create more accurate results. The GAN allows the learning of deep representations in the absence of substantial labelled training information. Computer vision, language and video processing, and image synthesis are just a few of the applications that might benefit from these representations. The purpose of this research is to get the reader conversant with the GAN framework as well as to provide the background information on Generative Adversarial Networks, including the structure of both the generator and discriminator, as well as the various GAN variants along with their respective architectures. Applications of GANs are also discussed with examples. Keywords: Generative Adversarial Networks (GANs), Generator, Discriminator, Supervised and Unsupervised Learning, Discriminative and Generative Modelling, Backpropagation, Loss Functions, Machine Learning, Deep Learning, Neural Networks, Convolutional Neural Network (CNN), Deep Convolutional GAN (DCGAN), Conditional GAN (cGAN), Information Maximizing GAN (InfoGAN), Stacked GAN (StackGAN), Pix2Pix, Wasserstein GAN (WGAN), Progressive Growing GAN (ProGAN), BigGAN, StyleGAN, CycleGAN, Super-Resolution GAN (SRGAN), Image Synthesis, Image-to-Image Translation.


2020 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
R. Sandra Yuwana ◽  
Fani Fauziah ◽  
Ana Heryana ◽  
Dikdik Krisnandi ◽  
R. Budiarianto Suryo Kusumo ◽  
...  

Deep learning technology has a better result when trained using an abundant amount of data. However, collecting such data is expensive and time consuming.  On the other hand, limited data often be the inevitable condition. To increase the number of data, data augmentation is usually implemented.  By using it, the original data are transformed, by rotating, shifting, or both, to generate new data artificially. In this paper, generative adversarial networks (GAN) and deep convolutional GAN (DCGAN) are used for data augmentation. Both approaches are applied for diseases detection. The performance of the tea diseases detection on the augmented data is evaluated using various deep convolutional neural network (DCNN) including AlexNet, DenseNet, ResNet, and Xception.  The experimental results indicate that the highest GAN accuracy is obtained by DenseNet architecture, which is 88.84%, baselines accuracy on the same architecture is 86.30%. The results of DCGAN accuracy on the use of the same architecture show a similar trend, which is 88.86%. 


2021 ◽  
Author(s):  
Ali Q. Saeed ◽  
Siti Norul Huda Sheikh Abdullah ◽  
Jemaima Che-Hamzah ◽  
Ahmad Tarmizi Abdul Ghani

BACKGROUND Glaucoma means irreversible blindness. Globally, it is the second retinal disease leading to blindness, just preceded by the cataract. Therefore, there is a great need to avoid the silent growth of such disease using the recently developed Generative Adversarial Networks(GANs). OBJECTIVE This paper aims to introduce GAN technology for the diagnosis of eye disorders, particularly glaucoma. This paper illustrates deep adversarial learning as a potential diagnostic tool and the challenges involved in its implementation. This study describes and analyzes many of the pitfalls and problems that researchers will need to overcome in order to implement this kind of technology. METHODS To organize this review comprehensively, we used the keywords: ("Glaucoma", "optic disc", "blood vessels") and ("receptive field", "loss function", "GAN", "Generative Adversarial Network", "Deep learning", "CNN", "convolutional neural network" OR encoder), in different variations to gather all the relevant articles from five highly reputed databases: IEEE Xplore, Web of Science, Scopus, Science Direct, and Pubmed. These libraries broadly cover technical and medical literature. For the latest five years of publications, we only included those within that period. Researchers who used OCT or visual fields in their work were excluded. However, papers that used 2D images were included. A large-scale systematic analysis was performed, then a summary was generated. The study was conducted between March 2020 and November 2020. RESULTS We found 59 articles after a comprehensive survey of the literature. Among 59 articles, 29 present actual attempts to synthesize images and provide accurate segmentation/classification using single/multiple landmarks or share certain experiences. Twenty-nine journal articles discuss recent advances in generative adversarial networks, practical experiments, and analytical studies of retinal disease. CONCLUSIONS Recent deep learning technique, namely generative adversarial network, has shown encouraging retinal disease detection performance. Although this methodology involves an extensive computing budget and optimization process, it saturates the greedy nature of deep learning techniques by synthesizing images and solves major medical issues. There is no existing systematic review paper on retinal disease utilizing generative adversarial networks to the extent of our knowledge. Two paper sets were reported; the first involves surveys on the recent development of GANs or overviews of papers reported in the literature applying machine learning techniques on retinal diseases. While in the second group, researchers have sought to establish and enhance the detection process through generating as real as possible synthetic images with the assistance of GANs. This paper contributes to this research field by offering a thorough analysis of existing works, highlighting current limitations, and suggesting alternatives to support other researchers and participants to improve further and strengthen future work. Finally, the new directions of this research have been identified.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-30
Author(s):  
R. Nandhini Abirami ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Usman Tariq ◽  
Chuan-Yu Chang

Computational visual perception, also known as computer vision, is a field of artificial intelligence that enables computers to process digital images and videos in a similar way as biological vision does. It involves methods to be developed to replicate the capabilities of biological vision. The computer vision’s goal is to surpass the capabilities of biological vision in extracting useful information from visual data. The massive data generated today is one of the driving factors for the tremendous growth of computer vision. This survey incorporates an overview of existing applications of deep learning in computational visual perception. The survey explores various deep learning techniques adapted to solve computer vision problems using deep convolutional neural networks and deep generative adversarial networks. The pitfalls of deep learning and their solutions are briefly discussed. The solutions discussed were dropout and augmentation. The results show that there is a significant improvement in the accuracy using dropout and data augmentation. Deep convolutional neural networks’ applications, namely, image classification, localization and detection, document analysis, and speech recognition, are discussed in detail. In-depth analysis of deep generative adversarial network applications, namely, image-to-image translation, image denoising, face aging, and facial attribute editing, is done. The deep generative adversarial network is unsupervised learning, but adding a certain number of labels in practical applications can improve its generating ability. However, it is challenging to acquire many data labels, but a small number of data labels can be acquired. Therefore, combining semisupervised learning and generative adversarial networks is one of the future directions. This article surveys the recent developments in this direction and provides a critical review of the related significant aspects, investigates the current opportunities and future challenges in all the emerging domains, and discusses the current opportunities in many emerging fields such as handwriting recognition, semantic mapping, webcam-based eye trackers, lumen center detection, query-by-string word, intermittently closed and open lakes and lagoons, and landslides.


Author(s):  
Zhike Han ◽  
Bin Yang ◽  
Yiren Du ◽  
Xingyu Du ◽  
Hao Xing ◽  
...  

The purpose of this paper is to study the help of generative adversarial networks (GAN) for face generation, and to explore whether the network can have an effect on complex face generation. Training an image translation neural network model based on a generative adversarial network with the help of a large number of real human face data sets. Using the CV2-based face tagging algorithm and the HED-based face edge extraction algorithm to obtain input information, and then based on the translation neural network model Developing a face generation system through Tensorflow, Torch and other frameworks to realize the function of generating real faces through sketches or “changing faces” through existing faces. Finally, this model provides training configuration and training information.


Sign in / Sign up

Export Citation Format

Share Document