scholarly journals Comparative Performance of Machine Learning Algorithms for Cryptocurrency Forecasting

Author(s):  
Nor Azizah Hitam ◽  
Amelia Ritahani Ismail

Machine Learning is part of Artificial Intelligence that has the ability to make future forecastings based on the previous experience. Methods has been proposed to construct models including machine learning algorithms such as Neural Networks (NN), Support Vector Machines (SVM) and Deep Learning. This paper presents a comparative performance of Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting of time series data. SVM has several advantages over the other models in forecasting, and previous research revealed that SVM provides a result that is almost or close to actual result yet also improve the accuracy of the result itself. However, recent research has showed that due to small range of samples and data manipulation by inadequate evidence and professional analyzers, overall status and accuracy rate of the forecasting needs to be improved in further studies. Thus, advanced research on the accuracy rate of the forecasted price has to be done.

2020 ◽  
Author(s):  
Atika Qazi ◽  
Khulla Naseer ◽  
Javaria Qazi ◽  
Muhammad Abo

UNSTRUCTURED Well-timed forecast of infectious outbreaks using time-series data can help in proper planning of public health measures. If the forecasts are generated from machine learning algorithms, they can be used to manage resources where most needed. Here we present a support vector machine (SVM) model using epidemiological data provided by Johns Hopkins University Centre for Systems Science and Engineering (JHU CCSE), world health organization (WHO), Center for Disease Control and Prevention (CDC) to predict upcoming data before official declaration by WHO. Our study conducted on the time series data available from 22nd January till 10th March 2020 reveals that COVID-19 was spreading at an alarming rate and progressing towards a pandemic. If machine learning algorithms are used to predict the dynamics of an infectious outbreak future strategies can help in better management. Besides exploratory data analysis (EDA) highlights the importance of quarantine measures taken at the onset of this endemic by China and world leadership in containing the initial COVID-19 transmission. Nevertheless, when quarantine measures were relaxed due to extreme scrutiny a sharp upsurge was seen in COVID-19 transmission. The initial insight that confirmed COVID-19 cases are increasing as these got the highest number of effects for our selected dataset from 22nd January-10th March 2020 i.e. 126,344 (64%). The recovered cases are 68289 (34%) and the death rate is around 2%. The model presented here is flexible and can include uncertainty about outbreak dynamics and can be a significant tool for combating future outbreaks.


2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


The aim of this research is to do risk modelling after analysis of twitter posts based on certain sentiment analysis. In this research we analyze posts of several users or a particular user to check whether they can be cause of concern to the society or not. Every sentiment like happy, sad, anger and other emotions are going to provide scaling of severity in the conclusion of final table on which machine learning algorithm is applied. The data which is put under the machine learning algorithms are been monitored over a period of time and it is related to a particular topic in an area


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.


2010 ◽  
Vol 07 (01) ◽  
pp. 59-80
Author(s):  
D. CHENG ◽  
S. Q. XIE ◽  
E. HÄMMERLE

Local descriptor matching is the most overlooked stage of the three stages of the local descriptor process, and this paper proposes a new method for matching local descriptors based on support vector machines. Results from experiments show that the developed method is more robust for matching local descriptors for all image transformations considered. The method is able to be integrated with different local descriptor methods, and with different machine learning algorithms and this shows that the approach is sufficiently robust and versatile.


2021 ◽  
Author(s):  
Dhairya Vyas

In terms of Machine Learning, the majority of the data can be grouped into four categories: numerical data, category data, time-series data, and text. We use different classifiers for different data properties, such as the Supervised; Unsupervised; and Reinforcement. Each Categorises has classifier we have tested almost all machine learning methods and make analysis among them.


2019 ◽  
Vol 11 (16) ◽  
pp. 1899 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue

The accurate and timely detection of forest disturbances can provide valuable information for effective forest management. Combining dense time series observations from optical and synthetic aperture radar satellites has the potential to improve large-area forest monitoring. For various disturbances, machine learning algorithms might accurately characterize forest changes. However, there is limited knowledge especially on the use of machine learning algorithms to detect forest disturbances through hybrid approaches that combine different data sources. This study investigated the use of dense Landsat 8 and Sentinel-1 time series data for detecting disturbances in tropical seasonal forests based on a machine learning algorithm. The random forest algorithm was used to predict the disturbance probability of each Landsat 8 and Sentinel-1 observation using variables derived from a harmonic regression model, which characterized seasonality and disturbance-related changes. The time series disturbance probabilities of both sensors were then combined to detect forest disturbances in each pixel. The results showed that the combination of Landsat 8 and Sentinel-1 achieved an overall accuracy of 83.6% for disturbance detection, which was higher than the disturbance detection using only Landsat 8 (78.3%) or Sentinel-1 (75.5%). Additionally, more timely disturbance detection was achieved by combining Landsat 8 and Sentinel-1. Small-scale disturbances caused by logging led to large omissions of disturbances; however, other disturbances were detected with relatively high accuracy. Although disturbance detection using only Sentinel-1 data had low accuracy in this study, the combination with Landsat 8 data improved the accuracy of detection, indicating the value of dense Landsat 8 and Sentinel-1 time series data for timely and accurate disturbance detection.


Sign in / Sign up

Export Citation Format

Share Document