scholarly journals Innovative Study on Microstructural Change in Duplex Stainless Steel in Corrosive Media

Author(s):  
Sumit Banerjee

Abstract: Duplex Stainless Steel was developed long back in 1930 and gradually finds its wide application because of its high strength, good weldability, good toughness and resistance to stress corrosion cracking. This alloy finds its application in pressure vessels, bridges, process plants and also in typically down to minus 50 degree centigrade applications. However, because of its high alloy content thermal conductivities of duplex stainless steel are low. Casting this alloy is difficult and can be industrially used after proper heat treatment. In this present study corrosion rates were measured for CD4MCu in terms of weight loss/unit area/hour and microstructures were observed in different corrosive medium with time as variable.

2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


Alloy Digest ◽  
1980 ◽  
Vol 29 (11) ◽  

Abstract JS777 is a high-alloy, fully austenitic stainless steel developed for applications where corrosive conditions are too severe for the standard grades of stainless steel. It also provides a cost-effective alternative to more expensive nickel-base and titanium-base alloys. It has relatively high resistance to stress-corrosion cracking and to intergranular corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-377. Producer or source: Jessop Steel Company.


Alloy Digest ◽  
2010 ◽  
Vol 59 (8) ◽  

Abstract NAS 64 is a duplex stainless steel with molybdenum for pitting and crevice corrosion resistance and a duplex microstructure for resistance to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1072. Producer or source: Nippon Yakin Kogyo Company Ltd.


Author(s):  
Waris N Khan ◽  
Rahul Chhibber

This work investigates the microstructure and mechanical properties of 2507 super duplex stainless steel and API X70 high strength low alloy steel weld joint. This joint finds application in offshore hydrocarbon drilling riser and oil–gas pipelines. Coated shielded metal arc welding electrodes have been designed and extruded on 309L filler and their performance compared with a commercial austenitic electrode E309L. Filler 309L solidifies in ferrite-austenite (F-A) mode with a resultant microstructure comprising skeletal ferrites with austenite distributed in the interdendritic region. Results of tensile and impact tests indicate that weld fabricated with laboratory-developed electrodes has higher ductility and impact energy than the commercial electrode. The tensile strength and weld hardness of commercial electrodes are superior. The laboratory-made electrode’s microhardness is lower than the commercial electrodes, making the former less prone to failure. An alternative welding electrode coating composition has been suggested through this work and found to be performing satisfactorily and comparable to the commercially available electrodes.


Author(s):  
J. M. Lardon ◽  
T. Poulain

Maraging stainless steels offer a large panel of high strength materials with good ductility and stress corrosion cracking resistance. Their mechanical properties compared to conventional 15-5 PH and 17-4 PH martensitic stainless steels show much better yield strength / toughness compromise for yield strength exceeding 1300 MPa. In the same time, fatigue resistance is significantly increased at high strength stress levels and material keeps good resistance to stress corrosion. These properties make them particularly suitable for ultra-high pressure equipment or high pressure rotating components submitted to high cyclic stresses. Their application for Pascalisation pressure vessels and ultra-high pressure compressors for ethylene gas is briefly presented.


2013 ◽  
Vol 302 ◽  
pp. 136-139 ◽  
Author(s):  
Ho Sung Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Ji Ung Choi

In the solid state bonding, joint are made by pressing surfaces together at high temperature so that a bond grows across the interface by atomic diffusion. In order to satisfy both requirements of thermal and mechanical properties of aerospace vehicle, conductive CuCrZr alloy was bonded to duplex steel with high strength. Solid state bonding was performed at 3 different pressure conditions and at temperatures of 850°C and 950°C. Microstructural and mechanical evaluation was performed to obtain the optimum joining condition.


2014 ◽  
Vol 783-786 ◽  
pp. 2250-2259
Author(s):  
S.M. Bhola ◽  
S. Kundu ◽  
Brajendra Mishra ◽  
Subrata Chatterjee

In the present study, corrosion behavior of a diffusion bonded interface formed between micro-duplex stainless steel (MDSS) and a mixed titanium alloy (Ti6Al4V) formed at 900°C for 60 minutes under 4MPa uniaxial pressure in vacuum has been investigated in 1M HCl and 1 M NaOH solutions using various electrochemical measurements such as Equilibrium Potential (EP), Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization (PD). For comparison, corrosion behavior of base metal alloys, MDSS and Ti6Al4V have also been also characterized. Bonded interface has been characterized in light optical microscopy and scanning electron microscopy using back scattered electron. The layer wise σ phase and λ+FeTi phase mixture has been observed at the bond interface and the bond tensile strength and shear strength were ~556.4MPa and ~420.2MPa, respectively. The corrosion rates of the bonded joint are intermediate to the corrosion rates of MDSS and Ti6Al4V alloy.


2000 ◽  
Vol 6 (S2) ◽  
pp. 766-767
Author(s):  
O. A. Hilders ◽  
L. Sáenz ◽  
N. Peña ◽  
M. Ramos ◽  
A. Quintero ◽  
...  

Due to the very good combination of the most outstanding properties of ferrite and austenite, the microstructure of duplex stainless steels allows them to obtain high strength and toughness levels even at low temperatures . As a result of these combined effects, duplex stainless steels have become very popular for many applications . In practice, the prolonged use of these materials at temperatures below approximately 500°C may cause an embrittlement of the ferrite phase, which has been called 475°C embrittlement. Thus, the isothermal aging at 475°C can be exploited to produce a variety of strength values associated with the corresponding decreases in ductility and variations of the fractal dimension of the fracture surfaces. No experimental measurements of the fractal dimension - tensile properties relationships are available for many commercial metallic alloys, then, the present experiments on a duplex stainless steel were conducted to show that the fractal dimension, D, many be used as a characterization parameter in fracture morphology - mechanical properties studies.


Sign in / Sign up

Export Citation Format

Share Document