Advanced High Strength Martensitic Stainless Steels for High Pressure Equipment

Author(s):  
J. M. Lardon ◽  
T. Poulain

Maraging stainless steels offer a large panel of high strength materials with good ductility and stress corrosion cracking resistance. Their mechanical properties compared to conventional 15-5 PH and 17-4 PH martensitic stainless steels show much better yield strength / toughness compromise for yield strength exceeding 1300 MPa. In the same time, fatigue resistance is significantly increased at high strength stress levels and material keeps good resistance to stress corrosion. These properties make them particularly suitable for ultra-high pressure equipment or high pressure rotating components submitted to high cyclic stresses. Their application for Pascalisation pressure vessels and ultra-high pressure compressors for ethylene gas is briefly presented.

Alloy Digest ◽  
1995 ◽  
Vol 44 (2) ◽  

Abstract VLX 562 is a high-strength austenitic-ferritic alloy with superior resistance than most 300 series stainless steels to stress-corrosion cracking. It is used in fresh water, where chlorides are present, and in high pressure applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-583. Producer or source: Vallourec Inc.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


Alloy Digest ◽  
2009 ◽  
Vol 58 (5) ◽  

Abstract Crucible 174 SXR is a premium-quality precipitation-hardening stainless steel designed for use as rifle barrels. It is a modification of Crucible’s 17Cr-4Ni that offers substantially improved machinability without sacrificing toughness. Its excellent corrosion resistance approaches that of a 300 series austenitic stainless steel, while its high strength is characteristic of 400 series martensitic stainless steels. At similar hardness levels, Crucible 174 SXR offers greater toughness than either the 410 or 416 stainless steels which are commonly used for rifle barrels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming and heat treating. Filing Code: SS-1034. Producer or source: Crucible Service Centers.


Alloy Digest ◽  
1993 ◽  
Vol 42 (3) ◽  

Abstract AVESTA 2205 is a ferritic-austenitic duplex stainless steel. It resists stress-corrosion cracking very well and has good pitting and general corrosion resistance. Its high strength and stress-corrosion resisting characteristics are a reflection of its duplex microstructure. Its uses include heat exchangers, desalination plants, and pressure vessels that need good resistance to corrosion. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-472. Producer or source: Avesta Sheffield Inc. Originally published July 1986, revised March 1993.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


2021 ◽  
Vol 73 (07) ◽  
pp. 53-54
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper NACE 2020-14695, “Comparison of Stress Corrosion Cracking Behavior of Fe13Cr5Ni- and Fe17Cr5.5Ni-Based High-Chromium Stainless Steels in High-Pressure/High-Temperature CO2 Environments,” by Yameng Qi, Zhonghua Zhang, and Chunxia Zhang, Baoshan Iron and Steel, prepared for the 2020 NACE International Corrosion Conference and Exposition, Houston, 14–18 June. The paper has not been peer reviewed. Stress corrosion cracking (SCC) of Fe13Cr5Ni- and Fe17Cr5.5Ni-based alloys in high-pressure/high-temperature (HP/HT) carbon dioxide (CO2) environments was investigated through slow-strain-rate tests (SSRTs) and electrochemical methods. The results show that a remarkable decrease in tensile strength and elongation to failure was observed when testing in a CO2 environment compared with that of air. Fe17Cr5.5Ni-based alloys possessed better SCC resistance than Fe13Cr5Ni-based alloys. The better SCC resistance of the former could be attributed to good repassivation capacity and pitting-corrosion resistance induced by the increase in chromium (Cr) and nickel (Ni) content. Introduction When service temperature exceeds 150°C, SCC resistance of Fe13Cr5Ni-based alloys could become an issue. Compared with Fe13Cr5Ni-based alloys, 22Cr duplex stainless steel has an excel-lent performance when exposed to temperatures over 150°C and stable SCC resistance in HP/HT CO2 environments. However, the cost of 22Cr duplex stainless steel is extremely high. Experimental Procedure Fe13Cr5Ni- and Fe17Cr5.5Ni-based alloys were produced by the authors’ research institute. The materials were in a quenched and tempered state. For micrographic observation, each specimen was ground with 2,000-grit carbide silicon paper and polished with 1.2-µm diamond paste. They were then degreased with acetone and etched with hydrochloric ferric chloride solution (a mixture of 5-g ferric chloride, 25-mL hydrochloric acid, and 25-mL ethanol). The steel microstructures were characterized using an optical micro-scope. The micrograph in Fig. 1a for the F-13Cr5Ni-based alloys shows a martensite phase with no notable second phases. Fe17Cr5.5Ni alloys possess long strip ferrite and martensite phases (Fig. 1b). For SSRTs, smooth tensile specimens with a gauge length of 25.4 mm and a diameter of 3.81 mm were prepared. The specimens were cut from the Fe13Cr5Ni- and Fe17Cr5.5Ni-based alloys into an 8-mm-thick, 12-mm-outer- diameter disc for electrochemical measurement. All specimens were polished to a 1,200-grit surface finish, degreased with acetone, cleansed with distilled water, and dried in air. SSRT and electrochemical-measurement procedures are detailed in the complete paper. Results SCC Susceptibility. As expected, tensile strength and elongation to failure of Fe13Cr5Ni- and Fe17Cr5.5Ni-based alloys deteriorated in HP/HT CO2 environments. Compared with an environment of air, the elongation to failure of Fe13Cr5Ni- and Fe17Cr5.5Ni-based alloys in HP/HT CO2 environments decreased by approximately 30 and 25%, respectively. In addition, tensile strength and elongation to failure of Fe17Cr5.5Ni-based alloys were greater than those of Fe13Cr5Ni-based alloys. Elongation, reduction in area, and time to failure of Fe17Cr5.5Ni-based alloys were found to be much higher than that of Fe13Cr5Ni-based alloys in HP/HT CO2 environments. It can be concluded that Fe17Cr5.5Ni alloys possess better SCC resistance than Fe13Cr5Ni alloys in these environments.


2006 ◽  
Vol 129 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Milan Veljkovic ◽  
Jonas Gozzi

Pressure vessels have been used for a long time in various applications in oil, chemical, nuclear, and power industries. Although high-strength steels have been available in the last three decades, there are still some provisions in design codes that preclude a full exploitation of its properties. This was recognized by the European Equipment Industry and an initiative to improve economy and safe use of high-strength steels in the pressure vessel design was expressed in the evaluation report (Szusdziara, S., and McAllista, S., EPERC Report No. (97)005, Nov. 11, 1997). Duplex stainless steel (DSS) has a mixed structure which consists of ferrite and austenite stainless steels, with austenite between 40% and 60%. The current version of the European standard for unfired pressure vessels EN 13445:2002 contains an innovative design procedure based on Finite Element Analysis (FEA), called Design by Analysis-Direct Route (DBA-DR). According to EN 13445:2002 duplex stainless steels should be designed as a ferritic stainless steels. Such statement seems to penalize the DSS grades for the use in unfired pressure vessels (Bocquet, P., and Hukelmann, F., 2001, EPERC Bulletin, No. 5). The aim of this paper is to present an investigation performed by Luleå University of Technology within the ECOPRESS project (2000-2003) (http://www.ecopress.org), indicating possibilities towards economic design of pressure vessels made of the EN 1.4462, designation according to the European standard EN 10088-1 Stainless steels. The results show that FEA with von Mises yield criterion and isotropic hardening describe the material behaviour with a good agreement compared to tests and that 5% principal strain limit is too low and 12% is more appropriate.


Author(s):  
Sumit Banerjee

Abstract: Duplex Stainless Steel was developed long back in 1930 and gradually finds its wide application because of its high strength, good weldability, good toughness and resistance to stress corrosion cracking. This alloy finds its application in pressure vessels, bridges, process plants and also in typically down to minus 50 degree centigrade applications. However, because of its high alloy content thermal conductivities of duplex stainless steel are low. Casting this alloy is difficult and can be industrially used after proper heat treatment. In this present study corrosion rates were measured for CD4MCu in terms of weight loss/unit area/hour and microstructures were observed in different corrosive medium with time as variable.


1966 ◽  
Vol 88 (1) ◽  
pp. 117-128 ◽  
Author(s):  
C. T. Yang

The effect of cryogenic temperatures (from 78 F to −423 F) on the yield strength of twenty alloys was studied. Experimental results prove that they do not conform to any of the following theories: Hollomon and Zener’s, Cottrell and Bilby’s, or Fisher’s. However, all the plottings in loge-loge scale of yield strength versus absolute cryogenic temperatures of these alloys fall on straight lines which are governed by one single general equation, σy = bT−m. From the Cottrell’s dislocation theory on yielding and Fisher’s equation of activation energy in forming a dislocation loop, the same type of equation of yield strength versus temperature as expressed by the empirical ones can be derived theoretically. The empirical equations are very useful in predicting yield strengths at any cryogenic temperature within or slightly out of the test range for which data were available. Some limited yield strength data at elevated temperatures for a few alloys were studied for comparison. It was observed the general equation for yield strength versus cryogenic temperatures holds valid for stainless steels but not so well for titanium, nickel, and aluminum alloys at elevated temperatures. However, no conclusion can be drawn until further detailed studies at elevated temperatures are made.


Sign in / Sign up

Export Citation Format

Share Document