scholarly journals Study on Mechanical Properties of Light Weight Vermiculite Concrete by Partially Replacing Cement with GGBS and Dolomite

Author(s):  
M. Preethi

Abstract: This research aims to determine the mechanical properties of light weight vermiculite concrete of M30 grade by partial replacement of cement with GGBS and Dolomite In this study two different concrete mixes were prepared with partial replacement of cement with 40% of GGBS and fine aggregate with varying proportions of vermiculite of 0%,5%, 10%,15%,20% and 25% and another set of concrete mixes were prepared with partial replacement of cement with dolomite of 30% and fine aggregate with varying proportions of vermiculite of 0%,5%,10%,15%,20% and 25%. Keywords: Vermiculite Concrete, Light Weight Concrete, GGBS, Dolomite, Mechanical Properties

2018 ◽  
Vol 251 ◽  
pp. 01007 ◽  
Author(s):  
Lam Tang Van ◽  
Tho Vu Dinh ◽  
Dien Vu Kim ◽  
Boris Bulgakov ◽  
Olga Aleksandrova ◽  
...  

The benefits of using waste materials as a partial replacement for cement in high performance concrete are also discussed. This paper presents the combined effects of bottom ash TPP “Vung Ang” and expanded polystyrene aggregate on different the properties of light-weight concrete. Twenty different concrete mixtures with a water to cement ratio of 0.4 and superplasticizer to cement ratio of 0.015 were used. On the one hand, the EPS was partially replaced with (0 ÷ 40)% by volume of concrete mixture. On the other hand, the fine aggregate was replaced with (0 ÷ 30)% by mass of BA TPP “Vung Ang”. The engineering properties, including workability, density and compressive strength of light-weight concrete were investigated at different curing times. The level of decrease in the strength depends upon the replacement level of EPS and BA. Specifically, the concrete containing 40% EPS and 30% BA at 28 days of age decrease in average density and strength were 43.2% and 26.4%, respectively, in comparison with the control concrete.


Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


2020 ◽  
Vol 1 (1) ◽  
pp. 26
Author(s):  
Sudarshan Dattatraya Kore

Plastic is used in many forms in day-to-day life. Since Plastic is non-biodegradable, landfills do not provide an environment friendly solution. Hence, there is strong need to utilize waste plastic. This creates a large quantity of garbage every day which is unhealthy and pollutes the environment. In present scenario solid waste management is a challenge in our country. The production of solid waste is increasing day to day and causes serious concerns to the environment. In this study, the recycled plastics are used in the concrete as a partial replacement of fine aggregate in concrete. The main purpose of this study is to investigate the mechanical properties of concrete such as workability, compressive, flexural and split tensile strengths of concrete mixes with partial replacement of conventional fine aggregate with aggregate produced from plastic waste. The use of plastic aggregate as replacement for fine aggregate enhances workability and fresh bulk density of concrete mixes. The mechanical properties of concrete such as compressive, flexural, and tensile strengths of concrete reduced marginally up to 10% replacement levels.


2012 ◽  
Vol 37 (3) ◽  
pp. 200-216 ◽  
Author(s):  
Roberto Felicetti ◽  
Pietro G. Gambarova ◽  
Patrick Bamonte

2018 ◽  
Vol 7 (3.12) ◽  
pp. 235
Author(s):  
Cherukuru Surendra ◽  
Karthik S ◽  
Saravana Raja Mohan K

The cement industry is responsible for about 6% of all CO2 emissions in the environment and numerous waste products out from the industries which is generating a lots of dumping problems and global warming. The main aim of this present study is to experimentally study the influence of partial replacement of cement with fly ash (FA) and partial replacement of fine aggregate with iron slag (IS) on the mechanical properties of concrete. Totally 10 mixes were prepared with 10, 20 and 30% replacements level of cement with fly ash and fine aggregate is replaced with 10, 20 and 30% by steel slag. The compressive and splitting tensile strength tests were found out after 7, 14, 28 and 7, 28 days age of curing for all the mixes respectively. Results were compared with conventional concrete and the optimum replacement percentage of FA and IS has reported.


Sign in / Sign up

Export Citation Format

Share Document