scholarly journals The Mechanical Properties of Steel Fibre Reinforced Concrete with Quarry Dust as a Partial Replacement of Fine Aggregate

Author(s):  
Hanumesh B. M
2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


2019 ◽  
Vol 5 ◽  
pp. 153-164
Author(s):  
Sagar Bista ◽  
Sagar Airee ◽  
Shikshya Dhital ◽  
Srijan Poudel ◽  
Sujan Neupane

Concrete is weak in tension, hence some measures must be adopted to overcome this deficiency as well as to enhance physical and other mechanical properties but in more convenient and economical method. Through many research from the past, it has been observed that addition of different types of fibres has been more effective for this purpose. This report presents the work undertaken to study the effect of steel and hay fibre on normal cement concrete of M-15 Grade on the basis of its mechanical properties which include compressive and tensile strength test and slump test as well. Although hay fibres are abundantly available in Nepal, no research have been popularly conducted here regarding the use of hay fibres in concrete and the changes brought by it on concrete’s mechanical properties. Experiments were conducted on concrete cubes and cylinders of standard sizes with addition of various percentages of steel and hay fibres i.e. 0.5%, 1% and 1.5% by weight of cement and results were compared with those of normal cement concrete of M-15 Grade. For each percentage of steel and hay fibre added in concrete, six cubes and six cylinders were tested for their respective mechanical properties at curing periods of 14 and 28 days. The results obtained show us that the optimum content of fibre to be added to M-15 grade of concrete is 0.5% steel fibre for compression and 0.5% hay fibre content for tension by weight of cement. Also, addition of steel and hay fibres enhanced the binding properties, micro cracking control and imparted ductility. In addition to this, two residential buildings were modeled in SAP software, one with normal concrete and other with concrete containing 0.5% steel fibre. Difference in reinforcement requirements in each building was computed from SAP analysis and it was found that 489.736 Kg of reinforcement could be substituted by 158.036 kg of steel fibres and decrease in materials cost of building with 0.5% steel fibre reinforced concrete was found to be Rs. 32,100.


1996 ◽  
Vol 23 (2) ◽  
pp. 511-517 ◽  
Author(s):  
T. T. Lie ◽  
V. K. R. Kodur

For use in fire resistance calculations, the relevant thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures were determined. These properties included the thermal conductivity, specific heat, thermal expansion, and mass loss, as well as the strength and deformation properties of steel-fibre-reinforced siliceous and carbonate aggregate concretes. The thermal properties are presented in equations that express the values of these properties as a function of temperature in the temperature range between 0 °C and 1000 °C. The mechanical properties are given in the form of stress–strain relationships for the concretes at elevated temperatures. The results indicate that the steel fibres have little influence on the thermal properties of the concretes. The influence on the mechanical properties, however, is relatively greater than the influence on the thermal properties and is expected to be beneficial to the fire resistance of structural elements constructed of fibre-reinforced concrete. Key words: steel fibre, reinforced concrete, thermal properties, mechanical properties, fire resistance.


Author(s):  
Fangyuan Li ◽  
Yunxuan Cui ◽  
Chengyuan Cao ◽  
Peifeng Wu

Directionally distributed steel fibre-reinforced concrete has been proposed as a novel concrete because of its high tensile strength and crack resistance in specific directions. Based on the existing studies of the effect of the fibre direction on the mechanical properties of fibre-reinforced concrete, the authors in this paper performed further studies of the mechanical properties of directionally distributed steel fibre-reinforced concrete by conducting split tensile and bending tests. The split tensile strength of the directionally distributed fibre-reinforced concrete clearly exhibited anisotropy. The split tensile strength perpendicular to the fibre direction was much higher than that parallel to the fibre direction. The split tensile strength perpendicular to the fibre direction was almost twice the tensile strength of plain concrete. The flexural performance of directionally distributed fibre-reinforced concrete in the fibre direction significantly improved compared to that of randomly distributed fibre-reinforced concrete. Specifically, the flexural strength increased by as much as 97%. Gravity resulted in a deviation in the tensile properties of concrete prepared by manually and directionally placing fibres in a layered casting process. The test results can be utilised in subsequent concrete designs. The conclusions reached in this paper provide comprehensive mechanical design parameters for the application of directionally distributed fibre-reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document