scholarly journals Experimental investigation of secondary flows in a family of three highly loaded low-pressure turbine cascades

Author(s):  
Tatjana Zorić
Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson ◽  
Lennart Lo¨fdahl

This paper presents a detailed experimental investigation of the evolution of secondary flow field characteristics and losses at several measurement planes downstream of a highly loaded low pressure turbine/outlet guide vane (LPT/OGV). The experiments were carried out in a linear cascade at Chalmers in Sweden. Several realistic upstream incidences and turbulence intensities have been investigated for one Reynolds number. Downstream characteristics have been measured with a 5-hole pneumatic probe. This allows for the determination of the mean vortical structures, their development and their interactions. The passage vortex and the blade shed vorticity are clearly visible at different downstream positions. Their intensity is shown to be strongly dependent on the inlet flow angle. The turbulence level seems to play a role on both the mixing within, and between the structures. The measurements also show that the losses along the blade span are dependent on the development of these structures.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson ◽  
Lennart Lo¨fdahl

In this paper 3D numerical simulations of turbulent incompressible flows are validated against experimental data from the linear low pressure turbine/outlet guide vane (LPT/OGV) cascade at Chalmers in Sweden. The validation focuses on the secondary flow-fields and loss developments downstream of a highly loaded OGV. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angles with the goal to validate how accurately and reliably the secondary flow fields and losses for both on- and off-design conditions can be predicted for OGV’s. Results from three different turbulence models as implemented in FLUENT, k-ε Realizable, kω-SST and the RSM are validated against detailed measurements. From these results it can be concluded that the RSM model predicts both the secondary flow field and the losses most accurately.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
J. T. Schmitz ◽  
S. C. Morris ◽  
R. Ma ◽  
T. C. Corke ◽  
J. P. Clark ◽  
...  

The performance and detailed flow physics of a highly loaded, transonic, low-pressure turbine stage has been investigated numerically and experimentally. The mean rotor Zweifel coefficient was 1.35, with dh/U2 = 2.8, and a total pressure ratio of 1.75. The aerodynamic design was based on recent developments in boundary layer transition modeling. Steady and unsteady numerical solutions were used to design the blade geometry as well as to predict the design and off-design performance. Measurements were acquired in a recently developed, high-speed, rotating turbine facility. The nozzle-vane only and full stage characteristics were measured with varied mass flow, Reynolds number, and free-stream turbulence. The efficiency calculated from torque at the design speed and pressure ratio of the turbine was found to be 90.6%. This compared favorably to the mean line target value of 90.5%. This paper will describe the measurements and numerical solutions in detail for both design and off-design conditions.


Sign in / Sign up

Export Citation Format

Share Document