scholarly journals Optimized Surface Roughening by Pulsed Waterjet for Suitable Adhesion Strength of Plasma Transferred Wire Arc Coating

2020 ◽  
Author(s):  
Nicholas O'Neil
Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 864
Author(s):  
Nicholas O’Neil ◽  
Abu Syed Kabir

This study utilized the high-pressure pulsed waterjet process and paired it with the plasma transferred wire arc technology to develop a novel technique to remanufacture damaged engine cylinder bores. The objective of this research was to eliminate the need for expensive bond-coats such as Ni-Al by optimizing the surface roughness profile of the substrate to provide acceptable mechanical bonding between the coating and the substrate. In this study, a high chrome stainless steel wire (Metcoloy #2) was plasma spray coated on a wide range of pulsed waterjet roughened surface profiles generated on grey cast iron and cast aluminum A380 alloy, the two most common engine materials. The pulsed waterjet greatly increased the adhesion strength between the substrates and the Metcoloy #2 coating. The increase in adhesion strength is a result of the formation of favorable mechanical anchoring points. Optimal pulsed waterjet parameters were determined to avoid the production of a copious roughness profile which resulted in a coating that mirrored the roughened surface profile. Additionally, if the roughness profile produced by the pulsed waterjet was insignificant the coating was removed in its entirety during detachment-based failure.


1987 ◽  
Vol 48 (6) ◽  
pp. 1017-1028 ◽  
Author(s):  
F. Fabre ◽  
D. Gorse ◽  
B. Salanon ◽  
J. Lapujoulade
Keyword(s):  

2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


2013 ◽  
Vol E96.C (3) ◽  
pp. 374-377 ◽  
Author(s):  
Kazuo SENDA ◽  
Tsuyoshi MATSUDA ◽  
Kuniaki TANAKA ◽  
Hiroaki USUI

Sign in / Sign up

Export Citation Format

Share Document