scholarly journals Design of reinforced concrete slabs subject to the construction joints

Vestnik MGSU ◽  
2019 ◽  
pp. 1106-1120
Author(s):  
Andrei V. Deineko ◽  
Valentina A. Kurochkina ◽  
Irina Yu. Yakovleva ◽  
Aleksandr N. Starostin

Introduction. When erecting monolithic reinforced concrete floor slabs, a necessity of construction joints arises. The construction joints are the areas of structural weakening. The construction practice shows that the compliance with the correct technology of the construction joint arrangement is not a sufficient condition to ensure the strength balance of reinforced concrete floor slabs. As a result, the stress-deformation state calculated on the assumption of the concrete slab solidity deviates from the actual state. The relevance of the task is determined by the fact that the conformity of design and actual characteristics of the in-situ reinforced concrete structures as a whole depends on the correct calculations of construction joints. Materials and methods. The problem of implementing the construction joints in the monolithic floor slabs was considered by way of example of a residential building under construction. In the course of construction, pre-construction land surveys were carried out at the areas of the construction joint arrangement. Calculations of reinforced concrete structures using finite element method (FEM) were also performed. Results. As a result of the study, the actual deflections of the floor slabs were measured at the areas of the construction joints and FEM calculations were made on the same floor slabs, both those erected at once and those erected in stages subject to the construction joints. The difference between the calculated and actual deflections is conditioned upon the inaccurate conformity between the mathematical model and the real reinforced concrete structure, its erection and maintenance conditions. It should be noted that the deflection of horizontal reinforced concrete structures is only one of the stress-deformation state parameters that can be measured better than the others. It is shown that if the deflection of a real reinforced concrete structure does not correspond with the design estimation, the other stress-deformation state parameters will differ from the design estimation as well. Conclusions. The influence of joints can be taken into account in the scope of FEM computer-aided calculations with the explicit reproduction of the structure erection by pouring concrete, using engineering approach to the consideration of nonlinearity on the basis of the introducing reduction coefficients to the reinforced concrete effective modulus of elasticity. Solid composition modeling of reinforced concrete provides the best possibilities on taking all sorts of nonlinearity manifestations into consideration.

2008 ◽  
Vol 15 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Greg C. Bessette

A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.


2020 ◽  
Vol 18 (5) ◽  
pp. 1175-1191
Author(s):  
Utino Worabo Woju ◽  
A.S. Balu

Purpose The aim of this paper is mainly to handle the fuzzy uncertainties present in structures appropriately. In general, uncertainties of variables are classified as aleatory and epistemic. The different sources of uncertainties in reinforced concrete structures include the randomness, mathematical models, physical models, environmental factors and gross errors. The effects of imprecise data in reinforced concrete structures are studied here by using fuzzy concepts. The aim of this paper is mainly to handle the uncertainties of variables with unclear boundaries. Design/methodology/approach To achieve the intended objective, the reinforced concrete beam subjected to flexure and shear was designed as per Euro Code (EC2). Then, different design parameters such as corrosion parameters, material properties and empirical expressions of time-dependent material properties were identified through a thorough literature review. Findings The fuzziness of variables was identified, and their membership functions were generated by using the heuristic method and drawn by MATLAB R2018a software. In addition to the identification of fuzziness of variables, the study further extended to design optimization of reinforced concrete structure by using fuzzy relation and fuzzy composition. Originality/value In the design codes of the concrete structure, the concrete grades such as C16/20, C20/25, C25/30, C30/37 and so on are provided and being adopted for design in which the intermediate grades are not considered, but using fuzzy concepts the intermediate grades of concrete can be recognized by their respective degree of membership. In the design of reinforced concrete structure using fuzzy relation and composition methods, the optimum design is considered when the degree of membership tends to unity. In addition to design optimization, the level of structural performance evaluation can also be carried out by using fuzzy concepts.


2011 ◽  
Vol 189-193 ◽  
pp. 847-852 ◽  
Author(s):  
Lei Tan ◽  
Xi Jun Liu ◽  
Ming Qiao Zhu

With wide applications of FRP in civil engineering, it is necessary to study the durability of FRP reinforced concrete structure. Based on the related research both at home and abroad, the factors affecting durability of FRP reinforced concrete structures and the corresponding improvements have been put forward by analyzing the durability of concrete, FRP materials and reinforced structures, respectively.


Author(s):  
Oleg Rubin ◽  
Anton Antonov ◽  
Sergey Lisichkin ◽  
Kirill Frolov ◽  
Andrey Lisichkin

Introduction. Floorings of the turbine hall and installation sites of the HPP (PSS) are one of the most important reinforced concrete structures, as during operation they are subjected to significant process duties, including those not provided for by the project. Thus, during the testing of crane equipment on the floor surface of the installation site of the Alluriquin HPP under construction, the cargo weighing 22 tons fell, under the influence of which the floor slab was punched, which required a comprehensive study of the condition of the reinforced concrete structure of the floor and the surrounding area of the failure of structures, as well as the development of measures to strengthen the damaged structure. Materials and Methods. Visual and instrumental studies of the stress and strain state (SSS) of the reinforced concrete structure of the turbine hall slab and surrounding structures were carried out with the use of optical devices (MPB-3 reading microscope), Schmidt hammer to determine the strength of concrete structures, as well as the “reinforcement load removal” method to determine the actual stresses in the reinforcement of structures. Results. The punching of the reinforced concrete floor of the installation site with vertical displacements of the edges of through cracks up to 12 mm, as well as the system of cracks formed during the fall of cargo was revealed. The actual stresses in the reinforcement are determined by the “reinforcement load removal” method. On the basis of finite element modeling the actual condition of structures during the period of cargo fall and after the removal of the load is obtained. On the basis of the analysis of results of field and design studies the schematic diagram of strengthening of structures by carbon composite materials is developed. Conclusions. The actual SSS of the reinforced concrete floor of the installation site and its support structures during the period of the cargo fall and after the termination of the impulse load is established. The vertical displacement of the edges of the crack of the floor punching was 17.5 mm during the period of the fall of the load and 12 mm after the removal of the impulse load. Crack opening width in reinforced concrete structures in the cargo drop area reached 2 mm. At the moment when the cargo fell on the floor slab, the values of stresses in the reinforcement cage reached 200 MPa; after the impact — 76.2 MPa. With a view of the subsequent safe operation of the reinforced concrete floor and surrounding structures the basic schemes of their strengthening by external reinforcement on the basis of carbon fiber have been developed, which have been proved by calculation.


Vestnik MGSU ◽  
2019 ◽  
pp. 473-483
Author(s):  
Oleg D. Rubin ◽  
Sergey E. Lisichkin ◽  
Valeriy B. Nikolaev ◽  
Dmitry S. Bashkirov

Introduction. Reinforced concrete walls of lock installations are critical structures, since a decrease in their level of safety in the course of long-term operation can lead to negative consequences. Characteristic features of such structures determine their stress-deformation state and bearing capacity. So, an integral part of the lock chamber walls are inter-block construction joints (both horizontal and vertical), the presence of which is taken into account by regulatory and methodical documents existing in the recent decades. Materials and methods. There are used analytical methods for processing results of observing stress-deformation state of massive reinforced-concrete lock chamber walls as well as computational procedures and normative documents. Results. The analysis of the condition of a number of lock chamber walls of such domestic objects as Canal named in honour of Moscow, Kashkhatau hydroelectric power station, Pavlovsky lock, etc. has been conducted for this work. A special character of crack formation and stress-deformation state is noted, which required urgent measures for their strengthening and repair. The analysis of normative document provisions is performed for the documents existing at the time of design work on the most of these installations and ones in effect at the present time. Conclusions. The characteristic features are revealed for reinforced concrete structures of the lock chamber walls, which determine the features of their stress-deformation state. Due to the imperfection of the normative documents that were in effect during the designing the most of such structures, an off-design state arose in a number of cases that required urgent measures to strengthen and repair them. Improvement work is going on at the directions of methodology for calculating the stress-deformation state and strength of reinforced concrete structures in the lock chamber walls.


2021 ◽  
Vol 331 ◽  
pp. 05010
Author(s):  
Jati Sunaryati ◽  
Nidiasari Nidiasari ◽  
Rifqi Yuliandri

Under major load earthquakes, reinforced concrete structures designed according to the current codes will experience an inelastic deformation which is difficult to predict and control. Performance-based plastic design (PBPD) methodology is applied forward to design reinforced concrete structures in this study. In this method, as performance criteria, the target drift and yield mechanisms are preselected. Based on the work-energy balance principle, the design base shear is given as earthquake level and calculated as work required to push the structure as monotonically load to the target drift. The load equals the energy needed by an equivalent single degree of freedom in the same state. The plastic design is utilized to design the desired yield mechanism. The method was adopted on a 10-story reinforced concrete structure with an earthquake load in lateral forces based on SNI 1726:2019 and the Performance-Based Plastic Design (PBPD) method. Pushover analysis was carried out where the structure was pushed to obtain lateral load resistance followed by yielding gradually until plastic deformation occurred collapse From the pushover analysis, the ductility value for SNI 1726:2019 is less ductile than analytical using the Performance-Based Plastic Design (PBPD) method


2019 ◽  
Vol 2 (2) ◽  
pp. 79
Author(s):  
Inggrid Loiza Batak ◽  
Safrin Zuraidah ◽  
Budi Hastono

Recently, a structure that is generally applied to the construction of multi-storey buildings is reinforced concrete structure. Structural steel is rarely used nowadays, yet in fact, the steel structures are still able to compete with reinforced concrete structures. Therefore, this study aims to determine the exact profile dimensions and the comparison of material prices between steel structures and reinforced concrete structures for columns and beams in redesigning H Building of Dr. Soetomo University, Surabaya. The WF profile steel will be used in this redesigning project. The structure is modeled using AutoCAD, and then imported into SAP2000 software. Modeling structure consists of columns, primary beams and secondary beams. The loads reviewed from the design are dead load, live load, wind load and seismic load. From the results of design review obtained, the overall strength of structure rearrangement is safe and it is obtained the beam profile dimensions of B1 WF 600x200x12x20, B2 WF 400x300x9x14 profile, B3 WF 400x300x9x14 profile, B4 WF 350x200x8x12 profile, and B5 WF 175x125x 5.5x8 profile, K1 WF 400x400x18x28 column profile, and K2 WF 400x400x21x21 column profile. The use of steel structures as a substitute for reinforced concrete structures for columns and beams in the building is a way more expensive with the percentage of steel structure 149.13% more expensive than reinforced concrete structure.


2014 ◽  
Vol 548-549 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yao Hong Huang ◽  
Yong Chang Guo

With the wide application of FRP reinforced concrete structure, the durability of FRP reinforced concrete structure causing more and more attention . This paper introduce domestic and foreign research situation of durability of FRP reinforced concrete structure in three aspects including FRP material, epoxy resin and FRP reinforced concrete structures .


2011 ◽  
Vol 255-260 ◽  
pp. 309-313
Author(s):  
Li Hua Lu ◽  
Hai Xia Sun ◽  
Si Li Chen ◽  
Gui Sheng Pan ◽  
Min Ji Yang

In order to study the bearing capacity conditions of the reinforced concrete structure in service in the phase of using,test the mechanical properties of the bending members of reinforced concrete structures under loading and not loading conditions,and compare and analyze the relationship of load and deflection, crack, steel strain,concrete face strain under the two conditions,has got the conclusion that the bearing capacity decreased almost 12% under holding load, and analyze the effect of the bearing capacity and deformation under holding load; use ABAQUS finite element to simulate bending members of reinforced concrete structures under holding loading,and the simulation values are very close to the experimental results; indicate that finite element simulation can be carried out in prediction the service life of reinforced concrete structure in practical engineering.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Sign in / Sign up

Export Citation Format

Share Document