scholarly journals Protected Light-Tree Reconfiguration Without Flow Interruption in Elastic Optical Networks

Author(s):  
N’takpe N’guessan Christian ◽  
Adepo Joel Christian ◽  
Babri Michel
Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 211
Author(s):  
Amanvon Ferdinand Atta ◽  
Joël Christian Adépo ◽  
Bernard Cousin ◽  
Souleymane Oumtanaga

Network reconfiguration is an important mechanism for network operators to optimize network performance and optical flow transfer. It concerns unicast and multicast connections. Multicast connections are required to meet the bandwidth requirements of multicast applications, such as Internet Protocol-based TeleVision (IPTV), distance learning, and telemedicine. In optical networks, a multicast connection is made possible by the creation of an optical tree-shaped path called a light-tree. The problem of light-tree pair reconfiguration is addressed in this study. Given an initial light-tree used to transfer an optical flow and a final light-tree that is computed by the network operator to optimize network performance, the goal is to migrate the optical flow from the initial light-tree to the final light-tree without flow interruption. Flow interruption is not desirable for network operators because it forces them to pay financial penalties to their customers. To solve this problem, existing methods use a branch approach that is inefficient if some network nodes do not have wavelength conversion capability. Therefore, we proposed in this study a sub-tree-based method. This approach selects and configures sub-tree pairs from the light-tree pair (initial light-tree, final light-tree) to be reconfigured. Then, we produce a sequence of configurations. The performance study confirms that our method is efficient in solving the problem of light-tree pair reconfiguration because our method does not cause flow interruption.


2013 ◽  
Vol E96.B (7) ◽  
pp. 1845-1856
Author(s):  
Xin WANG ◽  
Filippos BALASIS ◽  
Sugang XU ◽  
Yoshiaki TANAKA

Author(s):  
Rajbir Singh

Optical networks are bandwidth efficient networks are used for long haul communication providing seamless data transfer. For high speed data transmission in open space between different satellites, Inter-satellite Optical wireless communication (IsOWC) is widely used .In this paper we have evaluated the performance of IsOWC communication link for high speed data transmission .The performance of the system is evaluated on the basis of qualitative parameters such as Q-factor and BER using optisystem simulator.


Author(s):  
Swati Bhalaik ◽  
Ashutosh Sharma ◽  
Rajiv Kumar ◽  
Neeru Sharma

Objective: Optical networks exploit the Wavelength Division Multiplexing (WDM) to meet the ever-growing bandwidth demands of upcoming communication applications. This is achieved by dividing the enormous transmission bandwidth of fiber into smaller communication channels. The major problem with WDM network design is to find an optimal path between two end users and allocate an available wavelength to the chosen path for the successful data transmission. Methods: This communication over a WDM network is carried out through lightpaths. The merging of all these lightpaths in an optical network generates a virtual topology which is suitable for the optimal network design to meet the increasing traffic demands. But, this virtual topology design is an NP-hard problem. This paper aims to explore Mixed Integer Linear Programming (MILP) framework to solve this design issue. Results: The comparative results of the proposed and existing mathematical models show that the proposed algorithm outperforms with the various performance parameters. Conclusion: Finally, it is concluded that network congestion is reduced marginally in the overall performance of the network.


1999 ◽  
Vol 35 (4) ◽  
pp. 318 ◽  
Author(s):  
J. Capmany ◽  
D. Pastor ◽  
A. León ◽  
P. Chamorro ◽  
D. Santos

Sign in / Sign up

Export Citation Format

Share Document