scholarly journals METHOD FOR DETERMINING A HIGH-FREQUENCY INTERVAL OF THE PULSATION SPECTRUM OF THE VERTICAL SPEED COMPONENTS IN THE LAMINAR BOUDARY LAYER OF WATER TURBULENT FLOW

2019 ◽  
pp. 133-140
Author(s):  
K.A. Presnyakov ◽  
◽  
G.K. Kerimkulova ◽  
G.O. Askalieva ◽  
E.Y. Pershakova ◽  
...  
2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


1995 ◽  
Vol 289 ◽  
pp. 379-405 ◽  
Author(s):  
David L. Bruhwiler ◽  
Tasso J. Kaper

In this work, we treat the problem of small-scale, small-amplitude, internal waves interacting nonlinearly with a vigorous, large-scale, undulating shear. The amplitude of the background shear can be arbitrarily large, with a general profile, but our analysis requires that the amplitude vary on a length scale longer than the wavelength of the undulations. In order to illustrate the method, we consider the ray-theoretic model due to Broutman & Young (1986) of high-frequency oceanic internal waves that trap and detrap in a near-inertial wavepacket as a prototype problem. The near-inertial wavepacket tends to transport the high-frequency test waves from larger to smaller wavenumber, and hence to higher frequency. We identify the essential physical mechanisms of this wavenumber transport, and we quantify it. We also show that, for an initial ensemble of test waves with frequencies between the inertial and buoyancy frequencies and in which the number of test waves per frequency interval is proportional to the inverse square of the frequency, a single nonlinear wave–wave interaction fundamentally alters this initial distribution. After the interaction, the slope on a log-log plot is nearly flat, whereas initially it was -2. Our analysis captures this change in slope. The main techniques employed are classical adiabatic invariance theory and adiabatic separatrix crossing theory.


1994 ◽  
Vol 96 (5) ◽  
pp. 3344-3344
Author(s):  
David M. Farmer ◽  
Daniela Di Iorio ◽  
Ward Cartier

2003 ◽  
Vol 15 (01) ◽  
pp. 8-16
Author(s):  
CHANG-WEI HSIEH ◽  
CHI-WU MAO ◽  
MING-SHING YOUNG ◽  
TZUNG-LIEH YEH

A new pulse spectrum method of assessing autonomic function was examined in a pharmacological experiment on eight healthy volunteers. The pulse pressure data is obtained under control condition and in parasympathetic blocked by atropine. Compared with the spectral method of heart rate variability (HRV), which is wide-spreading in laboratory studies and clinical diagnosis nowadays, the method of pulsation spectrum provides a new and direct view to assess parasympathetic control. As can be seen from the results, the high frequency of pulsation harmonics are reduced by the parasympathetic blocked, and on the contrary, low frequency component increased. By the analysis of linear regression, the pulsation spectrum method indicates more correlations with atropine doses. We anticipate that the non-invasive assessment of short-term autonomic function will come to be performed more reliably and conveniently by using this method.


2007 ◽  
Vol 3 (S247) ◽  
pp. 312-315 ◽  
Author(s):  
Aleksandra Andic ◽  
M. Mathioudakis ◽  
F. P. Keenan ◽  
D. B. Jess ◽  
D. S. Bloomfield

AbstractHigh frequency acoustic waves have been suggested as a source of mechanical heating in the quiet solar chromosphere. To investigate this, we have observed intensity oscillations of several lines in the frequency interval 1.64-70mHz using data from the VTT Tenerife and the Dunn Solar Telescope at the National Solar Observatory. Our analysis of Fe i 543.45 nm, Fe i 543.29 nm and the G-band, indicate that the majority of oscillations are connected with the magnetic fields and do not provide sufficient mechanical flux for the heating of the chromosphere. This correlation is also observed in quiet Sun areas.


2006 ◽  
Vol 16 (5) ◽  
pp. 1141-1147 ◽  
Author(s):  
Qing-tao GUO ◽  
Ting-ju LI ◽  
Tong-min WANG ◽  
Jun-ze JIN ◽  
Zhi-qiang CAO ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 676
Author(s):  
Chunguang Xu ◽  
Lei He ◽  
Dingguo Xiao ◽  
Pengzhi Ma ◽  
Qiutao Wang

A high-frequency ultrasonic approach for testing and evaluating sprayed coating thickness is proposed in this paper. This technique is based on the maximum frequency interval method of the magnitude spectrum of the acoustic pressure reflection coefficient that adopts Welch spectrum estimation. The acoustic propagation model was set up at normal incidence, and the relationship between the maximum frequency interval by the Welch power spectrum and the coating thickness was established to provide the principle for determining coating thickness. According to this principle, the thickness of a series of stainless steel coatings and ZrO2–Y2O3 (yttria-stabilized zirconia (YSZ)) coatings were detected by scanning acoustic microscopy. The relative error was less than 4% with the microscope method, indicating that the proposed ultrasonic method provides a reliable nondestructive way to measure sprayed coating thickness. The uniformity of the sprayed coating thickness could be intuitively observed from C-scan images by programming.


2019 ◽  
Vol 3 (4) ◽  
pp. 200-208
Author(s):  
V. B. Taygin ◽  
А. V. Lopatin

Analysis of conditions, which are required for mirror antennas of spacecrafts destined for transmission of high-frequent radio signals, is done in this paper. These conditions are regarded to resistance and rigidity of the construction features of the material of an antenna’s reflector and its surface’s quality. It is mentioned that the requirements to the accuracy of the reflector’s shape grow together with the frequency of a radio signal. Altogether, the existing constructions of antennas and the producing technologies are not capable to obtain those requirements. The innovative method of controlling the shape of a reflector of a mirror antenna is presented in the paper. Its application gives an opportunity to produce constructions with a highly accurate surface. This method deals with the fact that the required accuracy of a reflector can be achieved via elastic deformation of its shell. Design of the regulating units for different types of reflectors is developed. We propose an algorithm of choosing the number of the regulating units and their locations. This algorithm uses the results of finite-element modal analysis of a reflector’s shell. Innovative design of axisymmetric and offset reflectors which shell’s shape can arise from controlled deformation is developed. We also suggest the design of the reflector’s shell with a timber with regulating units on it. Such design provides an opportunity to significantly decrease the number of the regulating units. Project of the reflector with a timber and console rods possessing low mass and high stiffness is developed. Method of achievement the high accuracy of a reflector, presented in the paper, can be applied to design of new space antennas operating in high-frequency interval.


2013 ◽  
Vol 8 (2) ◽  
pp. 13-20 ◽  
Author(s):  
Imrich Lipták ◽  
Alojz Kopáčik ◽  
Ján Erdélyi ◽  
Peter Kyrinovič

Abstract Building structures are extremely sensitive at influence of outdoor conditions. Most often these are the influence of wind, sunshine, temperature changes of the surrounding and at least the influence of the own or other loading. According to resonance of the structure with the surrounding is coming to vibration and oscillation in relative high frequency interval (0.1 Hz - 100.0 Hz). These phenomena significantly affect the static and dynamic characteristics of structures, their safety and functionality. The paper brings example of monitoring these phenomena. The object of monitoring is the Danube Bridge Apollo in Bratislava, which main steel structure was measured by acceleration sensors with frequency up to10 Hz. The main topic of the paper is the analysis of dynamic behavior of structure using spectral analysis method. The usage of Fourier Transform is described, own frequencies and amplitudes of structure oscillation are calculated.


2006 ◽  
pp. 27-40 ◽  
Author(s):  
A. Andjic

High frequency acoustic oscillations were suggested as the source of mechanical heating in the chromosphere. In this work the radial component of the oscillations in the frequency interval 3 mHz to 22 mHz are investigated. The observations were performed using "D spectrometry on the Fe I neutral spectral line at 543:45 nm. The high frequency oscillations of different frequencies appear to be associated with different spatial scales. It seems that different sources produce high and low frequency acoustic oscillations.


Sign in / Sign up

Export Citation Format

Share Document