scholarly journals Physiological and nutritional variability of different Pyricularia grisea isolates isolated from various hosts inciting blast disease of rice

2021 ◽  
Vol 9 (1) ◽  
pp. 3165-3167
Author(s):  
Tensirani Pradhan ◽  
MK Mishra ◽  
Sandhyarani Nanda ◽  
Anamita Sen
1978 ◽  
Vol 56 (2) ◽  
pp. 180-183 ◽  
Author(s):  
H. Yaegashi ◽  
S. Udagawa

Magnaporthe grisea is proposed as a comb.nov. for Ceratosphaeria grisea Hébert, the perfect state of Pyricularia grisea (Cke.) Sacc. Pyricularia grisea is very close morphologically to P. oryzae Cav., well known as the causal agent of blast disease on rice. Magnaporthe was recently established in the Diaporthales to accommodate a single species, M. salvinii (Catt.) Krause & Webster, which was described as the cause of stem rot of rice with conidial state known as Nakataea sigmoidea Hara. Based on a review of the taxonomic characters of Ceratosphaeria grisea, the desirability is discussed of its inclusion in the genus Magnaporthe.


Mycologia ◽  
1990 ◽  
Vol 82 (4) ◽  
pp. 509-512 ◽  
Author(s):  
Amy Y. Rossman ◽  
Richard J. Howard ◽  
Barbara Valent

Author(s):  
KD Puri ◽  
SM Shrestha ◽  
KD Joshi ◽  
GB KC

The severity of the rice blast disease (Pyricularia grisea) of both leaf and neck varies with different environment and it becomes destructive under favorable condition. The leaf and neck blast resistance and susceptible interaction of 30 different tropical rice lines were evaluated under low-, mid- and up-land conditions of Chitwan district and classified on the basis of disease severity with respect to susceptible check, Masuli. Of them, 5, 10, 12 and 3 rice lines were resistant to leaf blast, moderately resistant, moderately susceptible susceptible, respectively. Similarly, for the neck blast nine lines were resistant, thirteen moderately resistant, seven moderately susceptible and one was susceptible. The progenies from Masuli/MT4 had the highest leaf and neck blast susceptible reaction, while the most of progenies from IPB (Irradiated Pusa Basmati), KalinghaIII_IR64, Radha 32_ KIII and Masuli_IR64 were resistant, and the most promising sources against leaf and neck blast resistance. Therefore, the progenies from these parents can be used in breeding the resistant variety. Key words: Pyricularia grisea, resistance, rice lines J. Inst. Agric. Anim. Sci. 27:37-44 (2006)


2013 ◽  
Vol 13 (2) ◽  
pp. 7-14
Author(s):  
Ram B Khadka ◽  
Sundar M Shrestha ◽  
Hira K Manandhar ◽  
Gopal BKC

Blast (Pyricularia grisea) is an economically important disease of rice and finger millet in Nepal. Isolates of the fungus from different hosts differed in their response in media for mycelial growth and sporulation. Radial mycelial growth (RMG) and days of sporulation (DOS) of P. grisea were studied by culturing three fungal isolates from rice, finger millet and Panicum sp. on six different media: prune agar (PA), oat meal agar (OMA), potato dextrose agar (PDA), finger millet leaf decoction agar (FLDA), finger millet polish agar (FPA) and finger millet meal agar (FMA). The highest RMG was found in the isolates from finger millet and the lowest in the isolates from rice. The shortest DOS (1 week) was found in the isolate from rice and the longest (>2 weeks) in the isolate from finger millet. Among the different media used, PA and OMA were found to be the best for mycelial growth and sporulation of the isolates both from rice and finger millet. The shape, color and compactness of the fungal colonies varied with the media and isolates used. Cross inoculation studies showed that the fungus isolates from rice were able to infect all the plant species (rice, finger millet, Panicum sp., Eleusine indica and Setaria sp.) while isolates from finger millet were only able to infect three plant species (E. coracana, Setaria sp. and E. indica). This shows that the weed management is more important in finger millet fields than in rice field to manage the blast disease; and growing of rice adjacent to finger millet field is dangerous for blast epidemics in finger millet since rice serves as the source of inoculums. Nepal Journal of Science and Technology Vol. 13, No. 2 (2012) 7-14 DOI: http://dx.doi.org/10.3126/njst.v13i2.7707


2020 ◽  
Vol 22 (2) ◽  
pp. 119-128
Author(s):  
Santoso Santoso ◽  
Anggiani Nasution ◽  
Nani Yunani

[DIVERSITY AND THE SOURCE OF RESISTANCE GENE OF LOCAL RICE VARIETIES ON THE PATHOGENIC OF Pyricularia grisea CAUSE OF BLAST DISEASE]. Local rice varieties are known to have resistance or source of genes to  pests even though their productivity yield is low. The pathogen of Pyricularia grisea is a cause of blast disease, which is one of the obstacles in rice production. The research aims to characterize the resistance of local rice varieties to the  pathogen of P. grisea and to evaluate the virulence level of P. grisea pathogens against local rice varieties. A total of 100 local rice varieties and check varieties are susceptible and resistant namely Kencana Bali and Situ Patenggang tested their resistance to 4 dominant pathogenic of P. grisea i.e. races 033, 073, 133 and 173. Inoculation was carried out on stages 4-5 leaves or 18-21 days after seedling in a green house. The results showed a high genetic diversity of local rice varieties against pathogenic races 033, 073, 133 and 173. Based on the response of local rice varieties resistance i.e. moderately resistant (MR), resistant (R) and susceptible (S) to pathogenic races 033, 073 , 133 and 173 obtained 45 resistance response patterns. Cere Bereum varieties which are local rice varieties from West Java and Situ Patenggang resistant check varieties have a resistant response to 4 P. grisea pathogenic races used. A number of local rice varieties also show a resistant and moderately resistant response to the four pathogenic races used include Siam 11, Pare Siriendah, Menyan, Cere Manggu and Enud-Rawa Bogo. Local rice varieties Djedah and Padi Hitam (2) are local rice varieties that have a specific response of resistant or moderately resistant to race 173.  Race 133 and 173 have higher virulence rates than those of races 033 and 073 on local rice varieties. The results of this study indicate that there is a great potential for the utilization of local rice varieties, as a source of resistance genes for blast disease for the assembly of rice varieties that are resistant to blast disease.   


2017 ◽  
Vol 61 ◽  
pp. 1-7
Author(s):  
Nguyen Phu Toan ◽  
Pham Thi Thu Ha ◽  
Tran Dang Xuan

Rice blast fungus (Pyricularia grisea) is one of the most problematic pathogen to significantly reduce rice production worldwide. In this study, after being inoculated withP. grisea, changes in phenolic components and antioxidant capacity and correlation with the resistant level against rice blast fungus were investigated. Among screened rice cultivars, AV-3 was the strongest resistant, whereas BII-3 was the most susceptible. It was found that although total contents of phenolics and flavonoids, and antioxidant capacities varied among studied varieties, no significant coefficient with the resistance againstP. griseawas observed. After rice was affected by rice blast fungus, total phenolics and flavonoids were markedly reduced, but in contrast, the DPPH scavenging activities of only the susceptible rice cultivars was reduced. Among the 11 phenolic acids detected, catechol was found only in the tolerant cultivar AV-3, whereas the amount of cinnamic acid was increased after infection. Quantity of vanillin was also promoted, except in the susceptible cultivar BII-3 that was significantly reduced. Findings of this study showed that the resistant level againstP. griseawas proportionally correlated to the antioxidant capacity. Catechol, cinnamic acid, and vanillin may play a role but it needs further elaboration. Observations of this study suggested that the infection of blast disease by reducing amount of phenolics and flavonoids that may weaken the resistance of rice against this detrimental fungus.


2021 ◽  
Vol 23 (1) ◽  
pp. 31
Author(s):  
Shyntiya Ayu Lestari ◽  
Umi Kalsum ◽  
Evan Purnama Ramdan

<p>The demand for rice as an important food crop in Indonesia is still constrained by the attack of blast disease caused by <em>Pyricularia grisea</em>. Controlling using synthetic chemical pesticides has a negative impact on the environment so that the use of biological agents is an alternative option. This study aims to determine the effectiveness of several biological agents against the pathogen <em>P. grisea</em> that causes blast disease in rice plants in vitro. The study used a completely randomized design (CRD) with 6 levels of treatment and was repeated 3 times using the dooble culture method. The results of the study showed that the inhibition of <em>P. grisea</em> was the highest in the treatment of <em>P. grisea</em> × <em>Trichoderma</em> sp. and <em>P. grisea</em> × <em>Gliocladium</em> sp. namely 67.04% and 51.85% compared to other treatments. The <em>P. polymyxa</em> and <em>P. fluorescence</em> treatments showed low inhibition, namely 23.70% and 28.89%. Biological agents <em>Trichoderma</em> sp. and <em>Gliocladium</em> sp. able to inhibit the growth of the fungus <em>P. grisea</em>. Each biological agent has a different percentage of inhibition in that caused by the inhibitory mechanism of the biological agent.</p>


Sign in / Sign up

Export Citation Format

Share Document