scholarly journals Physiological responses of bio-silica-treated oil palm seedlings to drought stress (Tanggap fisiologi bibit kelapa sawit yang diberi bio-silika terhadap cekaman kekeringan)

2019 ◽  
Vol 87 (1) ◽  
Author(s):  
Dian Mutiara AMANAH ◽  
Nurhaimi HARIS ◽  
Laksmita Prima SANTI

Silica (Si) in the form of soluble silicic acid [H4SiO4] was an element that makes plants more resistant to drought stress through biochemical or molecular processes and contributing to growth stimulation under biotic and abiotic stress conditions. The objective of this study was to determine the response of oil palm seedlings to drought stress by the bio-Si application. The experiment was arranged in complete random design (CRD) with ten replicates.  Bio-Si was developed in solid and liquid forms with a dissolved Si content at least 10% (w/v). The eight combinations of solid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of Si-solubilizing microbes (SSM), (iv-viii) 5 g NPK 15-15-15 + 2.5; 5.0; 7.5; 10 g bio-Si; and 5 g Na2SiO3.  On the other hand, liquid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of SSM, (iv-viii) 5 g NPK 15-15-15 + 25 mL; 50 mL; 75 mL; 100 mL bio-Si; and 50 mL Na2SiO3. Drought stress tolerance was analyzed by using proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure in the leave of oil palm seedlings. Based on the physiological response, this research indicates that bio-Si application could induce seedling tolerance to drought stress. The bio-Si treatments gave a positive response of proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure. The doses of 5 g NPK 15-15-15 + 7.5 g solid bio-Si and 5 g NPK 15-15-15 + 75 mL liquid bio-Si per seedling were a recommended to increase oil palm seedlings tolerance to drought stress.[Key words: bio-Si, chlorophyll, nitrate reductase activity, Si-solubilizing microbes]. AbstrakSilika (Si) dalam bentuk terlarut asam silikat [H4SiO4]merupakan unsur yang dapat menyebabkan tanaman lebih tahan terhadap cekaman kekeringan melalui proses biokimia atau molekuler dan menstimulasi pertumbuhan dalam kondisi cekaman biotik dan abiotik. Tujuan dari penelitian ini adalah mengetahui respons fisiologi bibit kelapa sawit yang diberi bio-Si terhadap cekaman kekeringan. Penelitian didesain dengan rancangan acak lengkap (RAL) dan sepuluh ulangan. Bio-Si dikembangkan dalam bentuk padat dan cair dengan kadar Si terlarut minimal 10 % (b/v). Delapan aplikasi bio-Si padat per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu mikrob pelarut silika, (iv-viii) 5 g NPK 15-15-15 + 2,5 g; 5,0 g; 7,5 g; 10 g bio-Si, dan 5 g Na2SiO3. Sementara untuk aplikasi bio-Si cair per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK  15-15-15 + 109cfu mikroorganisme pelarut silika (MPS), (iv-viii) 5 g NPK 15-15-15 + 25 ml; 50 ml; 75 ml; dan 100 mLbio-Si, dan 50 ml Na2SiO3. Pengamatan yang dilakukan meliputi analisis prolin, aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata pada daun bibit kelapa sawit. Berdasarkan data fisiologi yang diperoleh dari kegiatan penelitian ini, aplikasi bio-Si dapat meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan. Perlakuan bio-Si memberikan respon positif terhadap konsentrasi prolin,aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata.Dosis 5 g NPK 15-15-15 + 7,5 g bio-Si padat dan 5 g NPK 15-15-15 + 75 mLbio-Si cair dapat direkomendasikan untuk meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan.  [Kata kunci: bio-Si, klorofil, aktivitas nitrat reduktase, mikroorganisme pelarut silika].

2019 ◽  
Vol 34 (1) ◽  
pp. 31
Author(s):  
Endah Nurwahyuni ◽  
Eka Tarwaca Susila Putra

<p>Planting drought-resistance plants in terms of agronomy, such as induction of plant tolerance using calcium is assumed to be able to solve the climate anomaly problem. Calcium is known as an element that plays an essential role in determining the response of plant resistance to drought through biochemical activity. This study aimed to determine the role of calcium in changing photosynthesis activity in order to increase the resistance to drought stress. The treatment was arranged in factorial of 3 x 4 in a split plot Randomized Complete Block Design replicated three times. The first factor was the dose of calcium application consisted of 0 (control/without calcium), 0.04, 0.08 and 0.12 g. The second factor was the intensity of drought stress, which referred to the Fraction of Transpirable Soil Water method consisted of 1 (control/field capacity), 0.35 (moderate drought) and 0.15 (severe drought). The measurement data of stomatal aperture, Abscisic Acid (ABA) content, chlorophyll content, carotenoid content, proline content, nitrate reductase activity and photosynthesis rate that fulfill the assumption of homogeneity and normality were analyzed using variance at 95% accuracy and continued using DMRT. Moreover, regression analysis were determined of relationship between the treatment and parameters. The results revealed that drought resulted in a decline in leaf water potential and stomatal aperture. The effects of calcium on chlorophyll and carotenoid under drought stress could not be explained in this study. However, the application of calcium has a significant effect on decreased ABA, increased proline and nitrate reductase activity resulting in an increase in the photosynthetic rate of oil palm seeds in drought stress.</p>


2021 ◽  
Author(s):  
Juby BABY ◽  
Minimol Janakyseifudeen ◽  
Suma Basura ◽  
Santhoshkumar Adiyodi Venugopal ◽  
Jiji Joseph ◽  
...  

Abstract Background:Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non traditional area. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GVI 55 x M 13.12 didn’t yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. Results: The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress shows low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions.Conclusions: This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
D. Nayeli Martínez ◽  
Erick De la Barrera

Background: Plants take up various species of reactive nitrogen and their different physiological responses to the increase of nitrogen availability can be useful in biomonitoring. Questions: Does atmospheric nitrogen deposition affect the physiology of ruderal weeds? Which species are most responsive to the nitrogen deposition? Studied species: Eleven ruderal weeds. Study site and dates: Morelia, Michoacán, Mexico. 2019. Methods: Under scenarios of 10, 20, 40 and 80 kg N ha-1year-1, we quantified plant responses of biomass production, nitrate reductase activity, chlorophyll content, photosynthetic efficiency, δ15N, nitrogen and carbon content. Results: Total biomass production increased with the rate of nitrogen deposition for Bidens pilosa, Chloris gayana,Lepidium virginicum, and Pennisetum setaceum, as chlorophyll content in B. pilosa, C. gayana, and L. virginicum. In turn, the below- to above-ground biomass ratio decreased for B. pilosa and C. gayana, as photosynthetic efficiency in C. gayana, L. virginicum, and Chloris pycnothrix. Nitrate reductase activity was only affected in L. virginicumm, C. gayana, and T. officinale.    With the exception of C. pycnothrix, the nitrogen content increased, while the carbon augmented in C. gayana, C. pycnothrix, and P. setaceum. The C/N ratio was reduced in B. pilosa, C. gayana, Chloris virgata, P. setaceum, and T. officinale. The δ15N was increased in B. pilosa, C. gayana, C. virgata and P. setaceum. Conclusions: Bidens pilosa, C. gayana, L. virginicum, and P. setaceum were the species with more affected variables to nitrogen deposition, which could be useful in the biomonitoring.


Author(s):  
Jagdish Kumar Nagda ◽  
Nishant A. Bhanu ◽  
Nishant A. Bhanu ◽  
Deepmala Katiyar ◽  
Akhouri Hemantaranjan ◽  
...  

The present investigation was carried out to examine the role of exogenously applied ascorbic acid which mitigates the deleterious effects of salt stress in mungbean (Vigna radiata L.) genotype HUM-1. Plants grown under induced salinity stress at 150 mM NaCl were treated with different concentration of ascorbic acid, i.e., 0.5 mM, 1.0 mM and 2.0 mM. To study the effects of treatments of salt stress on chlorophyll content, proline content, nitrate reductase activity, superoxide dismutase activity and yield attributes data were recorded at 20, 40, 60 day after sowing. Nitrate reductase activity and chlorophyll content with 1.0 mM ascorbic acid under salinity (150 mM NaCl) while the activities of superoxide dismutase get reduced up to 43.71% at 40 days after sowing. In plant treated with combined treatment of 150 mM NaCl and 1.0 mM foliar applied ascorbic acid caused a decline in the level of proline, which was 3.38 mg, 3.35 mg and 6.30 mg at 20, 40 and 60 days after sowing. The threshold level of ascorbic acid was 150 mM NaCl along with 1.0 mM ascorbic acid, that improved the yield attributes under salinity. Ascorbic acid inhibits the adverse effect of NaCl for growth and development of plants. So ascorbic acid may be a promising treatment to ameliorate the deleterious effects of salt stress in crops.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baby Juby ◽  
Janaki Seifudeen Minimol ◽  
Basura Suma ◽  
Adiyodi Venugopal Santhoshkumar ◽  
Joseph Jiji ◽  
...  

Abstract Background Cocoa, being a shade loving crop cannot withstand long periods of water stress. Breeding for drought tolerance is the need of the hour due to change in climatic condition and extension of crop to non-traditional areas. Hybrids were produced by crossing four tolerant genotypes in all possible combination. The cross GV1 55 x M 13.12 didn’t yield any fruit due to cross incompatibility between these genotypes. Various biochemical parameters act as the true indicators to select tolerant and susceptible types. The major biochemical parameters considered after imposing stress included proline, nitrate reductase activity, superoxide dismutase content and glycine betaine. Results The drought tolerant hybrids were having high amount of proline, superoxide dismutase enzyme and glycine betaine content. Normally, plants having drought stress show low amount of nitrate reductase activity. However, in case of hybrids, the drought tolerant hybrids were having higher NR activity than the susceptible hybrids. The highest amount of NR was found in the control plants kept at fully irrigated conditions. Conclusions This experiment showed the role of different biochemical enzymes and osmolytes in giving tolerance to plants during drought stress. Logistic regression analysis selected proline and nitrate reductase as the two biochemical markers for identifying efficient drought tolerant genotypes in the future breeding programmes.


Sign in / Sign up

Export Citation Format

Share Document