scholarly journals Transverse Momentum Dependent (Un)polarized Gluon Distribution in Higgs Production

2016 ◽  
Author(s):  
Tomas KASEMETS
2015 ◽  
Vol 39 ◽  
pp. 1560115
Author(s):  
A. A. Grinyuk ◽  
A. V. Lipatov ◽  
G. I. Lykasov

We study the role of the non-perturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the TMD gluon distribution from the fit of the inclusive hadron spectra measured at low transverse momenta in [Formula: see text] collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation obtained at small transverse momenta outside the saturation region. A special attention is put to the phenomenological applications of presented TMD parton densities to some LHC processes, which are sensitive to the quark and gluon content of a proton.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Alessandro Bacchetta ◽  
Francesco Giovanni Celiberto ◽  
Marco Radici ◽  
Pieter Taels

Abstract We present a model calculation of transverse-momentum-dependent distributions (TMDs) of gluons in the nucleon. The model is based on the assumption that a nucleon can emit a gluon, and what remains after the emission is treated as a single spectator particle. This spectator particle is considered to be on-shell, but its mass is allowed to take a continuous range of values, described by a spectral function. The nucleon-gluon-spectator coupling is described by an effective vertex containing two form factors. We fix the model parameters to obtain the best agreement with collinear gluon distributions extracted from global fits. We study the tomography in momentum space of gluons inside nucleons for various combinations of their polarizations. These can be used to make predictions of observables relevant for gluon TMD studies at current and future collider facilities.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
M. Boglione ◽  
A. Simonelli

Abstract Factorizing the cross section for single hadron production in e+e− annihilations is a highly non trivial task when the transverse momentum of the outgoing hadron with respect to the thrust axis is taken into account. We work in a scheme that allows to factorize the e+e−→ H X cross section as a convolution of a calculable hard coefficient and a Transverse Momentum Dependent (TMD) fragmentation function. The result, differential in zh, PT and thrust, will be given to all orders in perturbation theory and explicitly computed to Next to Leading Order (NLO) and Next to Leading Log (NLL) accuracy. The predictions obtained from our computation, applying the simplest and most natural ansatz to model the non-perturbative part of the TMD, are in exceptional agreement with the experimental measurements of the BELLE Collaboration. The factorization scheme we propose relates the TMD parton densities defined in 1-hadron and 2-hadron processes, restoring the possi- bility to perform global phenomenological studies of TMD physics including experimental data from semi-inclusive deep inelastic scattering, Drell-Yan processes, e+e−→ H1H2X and e+e−→ H X annihilations.


2012 ◽  
Vol 20 ◽  
pp. 145-152
Author(s):  
M. ANSELMINO ◽  
M. BOGLIONE ◽  
S. MELIS

Recently, theoretical developments have led to the QCD evolution equations for the unpolarized Transverse Momentum Dependent (TMD) distribution functions and for the Sivers function (TMD-evolution). We tested whether the proposed TMD-evolution can already be observed in the SIDIS data on the Sivers asymmetry. Although very preliminary, our analysis shows that data are compatible with such an evolution with a clear indication of evolution in the x-dependent data subsets.


2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Alessandro Bacchetta ◽  
Valerio Bertone ◽  
Chiara Bissolotti ◽  
Giuseppe Bozzi ◽  
Filippo Delcarro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document