scholarly journals Ultrasound examination of peripheral nerve injuries in patients with limb injuries in the early post-traumatic or postoperative periods

2021 ◽  
Vol 11 (4) ◽  
pp. 87-95
Author(s):  
I. I. Mazhorova ◽  
E. Yu. Trofimova ◽  
L. T. Khamidova ◽  
R. S. Titov ◽  
Yu. A. Bogolyubsky ◽  
...  

Introduction. In the early hours and days after traumatic or surgical event it is essential to determine type of peripheral nerve injury accurately.Objective. To assess performance of diagnostic ultrasound (US) in patients with traumatic and intraoperative nerve injuries during the early hours and days after trauma or surgery.Materials and methods. 106 patients with clinical signs of extremity nerve injuries were included into the study. A total of 113 limb nerves were investigated with US.Results. US sensitivity in the detection of complete nerve rupture was 100% (95% CI: 39,8-100%), specificity — 99,0% (94,7100,0%); for nerve compression with the bone sensitivity was 100% (66,4-100%), specificity — 100% (96,3-100%); for nerve compression with fixation devices sensitivity was 100% (66,4-100%), specificity — 100% (15,8-100%) и 100% (88,4-100%).Conclusion. Nerve US is a reliable method for the evaluation of extremity nerve injury, the method can be recommended for use in the early hours and days after trauma or surgery.

2011 ◽  
Vol 106 (5) ◽  
pp. 2450-2470 ◽  
Author(s):  
Francisco J. Alvarez ◽  
Haley E. Titus-Mitchell ◽  
Katie L. Bullinger ◽  
Michal Kraszpulski ◽  
Paul Nardelli ◽  
...  

Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75–95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.


2014 ◽  
Vol 120 (5) ◽  
pp. 1105-1112 ◽  
Author(s):  
Selçuk Göçmen ◽  
Ali Kıvanç Topuz ◽  
Cem Atabey ◽  
Hakan Şimşek ◽  
Kenan Keklikçi ◽  
...  

Object Nerve compressions due to osteochondromas are extremely rare. The aim of this retrospective study was to investigate the mechanisms, diagnostic evaluations, and treatment of nerve lesions due to osteochondromas, and to review the literature. Methods The authors retrospectively reviewed their clinic data archive from 1998 through 2008, and 20 patients who were operated on due to peripheral nerve injuries caused by osseous growth were enrolled in the study. Patients' age, duration of symptoms, localizations, intraoperative findings, and modified British Medical Research Council (MRC) and electromyography data obtained from hospital records were evaluated. The literature on this topic available in PubMed was also reviewed. All 20 patients underwent surgery, which consisted of tumor excision performed by orthopedic surgeons and nerve decompression performed by neurosurgeons. Results There were 17 men and 3 women included in the study, with a mean age of 21 years (range 18–25 years). Three patients had multiple hereditary exostoses, and 17 had a solitary exostosis. All of the patients underwent en bloc resection. The most common lesion site was the distal femur (45%). The peroneal and posterior tibial nerves were the structures that were affected the most frequently. The mean follow-up was 3.9 years (range 2–7 years). After the surgery, all patients (100%) experienced good sensory recovery (modified MRC Grade S4 or S5). Conclusions To the authors' knowledge, no large series have reported peripheral nerve compression due to exostoses. The authors have several recommendations as a result of their findings. First, all patients with peripheral nerve compression due to an osteochondroma should undergo surgery. Second, preoperative electromyographic examinations and radiographic evaluation, consisting of MRI and CT to provide optimal information about the lesion, are crucially important. Third, immediate treatment is mandatory to regain the best possible recovery. And fourth, performing nerve decompression first and en bloc resection of osteochondroma consecutively in a multidisciplinary fashion is strongly recommended to avoid peripheral nerve injury.


Author(s):  
Rajnish K. Gupta ◽  
Alexandria N. Nickless

Peripheral nerve injury in the perioperative period can have a variety of etiologies, including preexisting patient factors and by surgical and anesthetic complications such as intraoperative positioning and nerve blockade. The actual incidence may be difficult to assess, because most nerve injuries resolve with time and frequently require minimal to no intervention. Injuries often manifest more than 48 hours after surgery and have even been noted in patients who undergo awake procedures and in hospitalized patients who never undergo surgery. This should not negate the fact that close attention to detail when positioning patients and performing regional anesthesia may help decrease the overall incidence of nerve injury and should be considered in every anesthesiologist’s perioperative plan. This chapter reviews proper assessment, treatment, and follow-up for peripheral nerve injuries.


2019 ◽  
Vol 20 (1) ◽  
pp. 95-108
Author(s):  
Adriana Miclescu ◽  
Antje Straatmann ◽  
Panagiota Gkatziani ◽  
Stephen Butler ◽  
Rolf Karlsten ◽  
...  

AbstractBackground and aimsAside from the long term side effects of a nerve injury in the upper extremity with devastating consequences there is often the problem of chronic neuropathic pain. The studies concerning the prevalence of persistent pain of neuropathic origin after peripheral nerve injuries are sparse. The prevalence and risk factors associated with chronic neuropathic pain after nerve injuries in the upper extremity were assessed.MethodsA standardized data collection template was employed prospectively and retrospectively for all patients with traumatic nerve injuries accepted at the Hand Surgery Department, Uppsala, Sweden between 2010 and 2018. The template included demographic data, pain diagnosis, type of injured nerve, level of injury, date of the lesion and repair, type of procedure, reoperation, time since the procedure, S-LANSS questionnaire (Self report-Leeds Assessment of Neuropathic Symptoms and Signs), RAND-36 (Item short form health survey), QuickDASH (Disability of Shoulder, Arm and Hand) and additional questionnaires concerned medication, pain intensity were sent to 1,051 patients with nerve injuries. Partial proportional odds models were used to investigate the association between persistent pain and potential predictors.ResultsMore than half of the patients undergoing a surgical procedure developed persistent pain. Prevalence of neuropathic pain was 73% of the patients with pain (S-LANSS ≥ 12 or more). Multivariate analysis indicated that injury of a major nerve OR 1.6 (p = 0.013), years from surgery OR 0.91 (p = 0.01), younger age OR 0.7 (p < 0.001), were the main factors for predicting pain after surgery. The type of the nerve injured was the strongest predictor for chronic pain with major nerves associated with more pain (p = 0.019).ConclusionsA high prevalence of chronic pain and neuropathic pain with a negative impact on quality of life and disability were found in patients after traumatic nerve injury. Major nerve injury, younger age and less time from surgery were predictors for chronic pain.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shimon Rochkind ◽  
Zvi Nevo

Objective. Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated.Background. Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect.The proposed technologyis a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats.Preclinical studyon rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft “gold standard” treatment.


2009 ◽  
Vol 111 (3) ◽  
pp. 490-497 ◽  
Author(s):  
Marnie B. Welch ◽  
Chad M. Brummett ◽  
Terrence D. Welch ◽  
Kevin K. Tremper ◽  
Amy M. Shanks ◽  
...  

Background Peripheral nerve injuries represent a notable source of anesthetic complications and can be debilitating. The objective of this study was to identify associations with peripheral nerve injury in a broad surgical population cared for in the last decade. Methods At a tertiary care university hospital, the quality assurance, closed claims, and institution-wide billing code databases were searched for peripheral nerve injuries over a 10-yr period. Each reported case was individually reviewed to determine whether a perioperative injury occurred, defined as a new sensory and/or motor deficit. The location and type of the injury were also identified. Nerve complications as a result of the surgical procedure itself were excluded, and an expert review panel assisted in the adjudication of unclear cases. Patient preoperative characteristics, anesthetic modality, and surgical specialty were evaluated for associations. Results Of all patients undergoing 380,680 anesthetics during a 10-yr period, 185 patients were initially identified as having nerve injuries, and after review, 112 met our definition of a perioperative nerve injury (frequency = 0.03%). Hypertension, tobacco use, and diabetes mellitus were significantly associated with perioperative peripheral nerve injuries. General and epidural anesthesia were associated with nerve injuries. Significant associations were also found with the following surgical specialties: Neurosurgery, cardiac surgery, general surgery, and orthopedic surgery. Conclusions To our knowledge, this is the largest number of consecutive patients ever reviewed for all types of perioperative peripheral nerve injuries. More importantly, this is the first study to identify associations of nerve injuries with hypertension, anesthetic modality, and surgical specialty.


2022 ◽  
Vol 10 (A) ◽  
pp. 1-5
Author(s):  
Riki Sukiandra ◽  
Eti Yerizel ◽  
Yuliarni Syafrita ◽  
Eryati Darwin

BACKGROUND: Interleukin-6 (IL-6) and inducible Nitric oxide Synthase (iNOS) have an effect on neuropathic pain in the inflammatory process in peripheral nerve injuries. AIM: This study aims to examine the effect of anti-IL-6 receptor antibody on IL-6 and iNOS levels as a consideration for the treatment of neuropathic pain in a rat model of peripheral nerve injury. METHODS: Twenty-eight young adult male Wistar rats were treated for peripheral nerve injury and then divided into two groups. Fourteen treatment groups (Group P) were given anti-IL-6 receptor antibody by injection at a dose of 100 g/day by injection into the saphenous vein in the rat’s leg for 3 days. In both groups, the serum IL-6 and iNOS levels were assessed on the 3rd day after administration of anti-IL-6 receptor antibody in group P, using the sandwich ELISA method. RESULTS: The results showed that the administration of anti-IL-6 receptor antibody did not have a significant effect on reducing IL-6 and iNOS levels in group P (p > 0.05). Administration of anti-IL-6 receptor antibody had more effect on IL-6 levels on iNOS levels, where a decrease in IL-6 levels caused a decrease in iNOS levels in group P (p = 0.004 and r = 0.693). CONCLUSIONS: We conclude that the present administration of anti-IL-6 receptor antibody cannot be considered as a treatment for neuropathic pain in peripheral nerve injuries, but can be used to influence IL-6 levels on iNOS levels.


Author(s):  
M. DESCHRIJVER ◽  
K. BULKMANS ◽  
I. VANWALLEGHEM ◽  
S. GEERS

Peripheral nerve injury and the effect of vitamins on the recovery process Although peripheral nerve injuries are usually not life-threatening, they can have a significant impact on the patient’s quality of life and daily functioning, with typical symptoms such as complete paralysis or severe neuropathic pain. The peripheral nervous system is capable of some regeneration and recovery, allowing conservative treatment in mild to moderate nerve damage. For severe peripheral nerve injuries surgical reconstruction remains the golden standard. However, despite the extensive knowledge of the pathophysiology of peripheral nerve trauma, a full functional recovery after a severe peripheral nerve injury is rare with the current therapeutic options. Success depends on a variety of factors: location and severity of the injury, age and physical condition of the patient, therapeutical approach, … Therefore, it is important to search for the best possible means to achieve maximal functional recovery. This article first discusses the current knowledge about the pathophysiology of peripheral nerve trauma, highlighting the most important factors that influence the recovery process. Subsequently, it will render a review of the influence of vitamins A/B/C/D/E/K on this recovery process: vit B and D seem to enhance the regeneration process of nerves and the functional recovery of the end organ, while vit C and E show an important antinociceptive effect.


Author(s):  
Jonathan Perera ◽  
Marco Sinisi

Stretching of more than 12% of a nerve or more than 8 hours of ischaemia will result in severe nerve injury. The force required to avulse cervical nerve roots is as little as 200 newtons. The nerve root exiting angles are very important, as different forequarter positions at the time of impact will result in differing force vectors and therefore differing injury. Nerve injuries can be extremely devastating not only for the patient but for their surrounding support structure as well. We discuss and detail the diagnosis and management of these lesions along with the useful investigations and treatment options. The appropriately timed management of these patients can allow good outcomes for both patient physical and subsequent mental health.


2018 ◽  
Vol 21 (01) ◽  
pp. 1850002
Author(s):  
Andrew J. Miller ◽  
Jacob Tulipan ◽  
Mark Wang ◽  
Pedro Beredjiklian ◽  
Andrzej Fertala ◽  
...  

Background & Aims: Peripheral nerve injury models require a reproducible surgical technique that provides a simple and extensile peripheral nerve exposure. We present a muscle sparing apprach to the sciatic nerve in a rabbit model. A combination of general anestheia, sedative and perioperative analgesics was given to minimize animal discomfort. Methods: A posterior lateral dissection of the rabbit hind leg was performed to expose the proximal sciatic nerve. This facilitated an extensile dissection of both the proximal and distal sciatic nerve. Results: The described dissection is atraumatic, bloodless, and yields minimal postoperative morbidity on the rabbit. All rabbits received standard postoperative care in compliance with all regulatory agencies. A full vetinarian staff was available to manage the animals postoperatively. Conclusion: We found that our technique is a reproducible and easy to perform surgical approach with basic surgical setup. Our animal model provides an opportunity to evaluate and study peripheral nerve injuries peripheral nerve injuries.


Sign in / Sign up

Export Citation Format

Share Document