scholarly journals Efficient Characterization of Quantum Evolutions via a Recommender System

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 598
Author(s):  
Priya Batra ◽  
Anukriti Singh ◽  
T. S. Mahesh

We demonstrate characterizing quantum evolutions via matrix factorization algorithm, a particular type of the recommender system (RS). A system undergoing a quantum evolution can be characterized in several ways. Here we choose (i) quantum correlations quantified by measures such as entropy, negativity, or discord, and (ii) state-fidelity. Using quantum registers with up to 10 qubits, we demonstrate that an RS can efficiently characterize both unitary and nonunitary evolutions. After carrying out a detailed performance analysis of the RS in two qubits, we show that it can be used to distinguish a clean database of quantum correlations from a noisy or a fake one. Moreover, we find that the RS brings about a significant computational advantage for building a large database of quantum discord, for which no simple closed-form expression exists. Also, RS can efficiently characterize systems undergoing nonunitary evolutions in terms of quantum discord reduction as well as state-fidelity. Finally, we utilize RS for the construction of discord phase space in a nonlinear quantum system.

2013 ◽  
Vol 11 (08) ◽  
pp. 1350070 ◽  
Author(s):  
XIAO-JING LI ◽  
HUI-HUI JI ◽  
XI-WEN HOU

The characterization of quantum discord (QD) has been well understood only for two-qubit states and is little known for mixed states beyond qubits. In this work, thermal quantum discord is studied for a qutrit system in different magnetic fields, where classical correlation and entanglement negativity are calculated for comparison. It is shown that the discord is more robust against temperature than the negativity. For a suitable region of magnetic field and its direction, the discord is non-zero while the negativity is zero. When the system is at a lower temperature, these three quantities, however, display a similar behavior for the varied field and direction, and their discontinuities come from crossovers between different ground states in the system. Moreover, the inequality between the quantum and classical correlations depends upon the system parameters as well as the temperature. In particular, both correlations are equal at a suitable field, direction, and temperature. Remarkably, such an equality remains for a strong field in the antiparallel direction, while both correlations in two-qubit systems are identical for any antiparallel field and temperature. These are useful for quantum information and understanding quantum correlations in qutrit mixed states.


2017 ◽  
Vol 31 (02) ◽  
pp. 1650256
Author(s):  
Jianwei Xu

Discord and entanglement characterize two kinds of quantum correlations, and discord captures more correlation than entanglement in the sense that even separable states may have nonzero discord. In this paper, we propose a new kind of quantum correlation that we call as oblique discord. A zero-discord state corresponds to an orthonormal basis, while a zero-oblique-discord state corresponds to a basis which is not necessarily orthogonal. Under this definition, the set of zero-discord states is properly contained inside the set of zero-oblique-discord states, and the set of zero-oblique-discord states is properly contained inside the set of separable states. We give a characterization of zero-oblique-discord states via quantum mapping, provide a geometric measure for oblique discord, and raise a conjecture, which if it holds, then we can define an information-theoretic measure for oblique discord. Also, we point out that the definition of oblique discord can be properly extended to some different versions just as the case of quantum discord.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Zouaoui ◽  
Larbi Talbi ◽  
Khelifa Hettak ◽  
Naresh K. Darimireddy

2021 ◽  
Vol 3 (2) ◽  
pp. 262-271
Author(s):  
Pablo Reséndiz-Vázquez ◽  
Ricardo Román-Ancheyta ◽  
Roberto León-Montiel

Transport phenomena in photosynthetic systems have attracted a great deal of attention due to their potential role in devising novel photovoltaic materials. In particular, energy transport in light-harvesting complexes is considered quite efficient due to the balance between coherent quantum evolution and decoherence, a phenomenon coined Environment-Assisted Quantum Transport (ENAQT). Although this effect has been extensively studied, its behavior is typically described in terms of the decoherence’s strength, namely weak, moderate or strong. Here, we study the ENAQT in terms of quantum correlations that go beyond entanglement. Using a subsystem of the Fenna–Matthews–Olson complex, we find that discord-like correlations maximize when the subsystem’s transport efficiency increases, while the entanglement between sites vanishes. Our results suggest that quantum discord is a manifestation of the ENAQT and highlight the importance of beyond-entanglement correlations in photosynthetic energy transport processes.


2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


Author(s):  
M.J. Cañavate-Sánchez ◽  
A. Segneri ◽  
S. Godi ◽  
A. Georgiadis ◽  
S. Kosmopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document