THERMAL DISCORD AND NEGATIVITY IN A TWO-SPIN-QUTRIT SYSTEM UNDER DIFFERENT MAGNETIC FIELDS

2013 ◽  
Vol 11 (08) ◽  
pp. 1350070 ◽  
Author(s):  
XIAO-JING LI ◽  
HUI-HUI JI ◽  
XI-WEN HOU

The characterization of quantum discord (QD) has been well understood only for two-qubit states and is little known for mixed states beyond qubits. In this work, thermal quantum discord is studied for a qutrit system in different magnetic fields, where classical correlation and entanglement negativity are calculated for comparison. It is shown that the discord is more robust against temperature than the negativity. For a suitable region of magnetic field and its direction, the discord is non-zero while the negativity is zero. When the system is at a lower temperature, these three quantities, however, display a similar behavior for the varied field and direction, and their discontinuities come from crossovers between different ground states in the system. Moreover, the inequality between the quantum and classical correlations depends upon the system parameters as well as the temperature. In particular, both correlations are equal at a suitable field, direction, and temperature. Remarkably, such an equality remains for a strong field in the antiparallel direction, while both correlations in two-qubit systems are identical for any antiparallel field and temperature. These are useful for quantum information and understanding quantum correlations in qutrit mixed states.

2016 ◽  
Vol 14 (03) ◽  
pp. 1650016 ◽  
Author(s):  
Ya-Li Yuan ◽  
Xi-Wen Hou

The investigation of quantum discord has mostly focused on two-qubit systems due to the complicated minimization involved in quantum discord for high-dimensional states. In this work, three geometric discords are studied for the thermal state in a two-qutrit system with various couplings, external magnetic fields, and temperatures as well, where the entanglement measured in terms of the generalized negativity is calculated for reference. It is shown that three geometric discords are more robust against temperature and magnetic field than the entanglement negativity. However, all four quantities exhibit a similar behavior at lower temperature and weak magnetic field. Remarkably, three geometric discords at finite temperature reveal the phenomenon of double sudden changes at different magnetic fields while the negativity does not. Moreover, the hierarchy among three discords is discussed. Those adjustable discords with the varied coupling, temperature, and magnetic field are useful for the understanding of quantum correlations in high-dimensional states and quantum information processing.


2012 ◽  
Vol 12 (9&10) ◽  
pp. 721-742
Author(s):  
Aharon Brodutch ◽  
Kavan Modi

Entanglement does not describe all quantum correlations and several authors have shown the need to go beyond entanglement when dealing with mixed states. Various different measures have sprung up in the literature, for a variety of reasons, to describe bipartite and multipartite quantum correlations; some are known under the collective name {\it quantum discord}. Yet, in the same sprit as the criteria for entanglement measures, there is no general mechanism that determines whether a measure of quantum and classical correlations is a proper measure of correlations. This is partially due to the fact that the answer is a bit muddy. In this article we attempt tackle this muddy topic by writing down several criteria for a ``good" measure of correlations. We breakup our list into \emph{necessary}, \emph{reasonable}, and \emph{debatable} conditions. We then proceed to prove several of these conditions for generalized measures of quantum correlations. However, not all conditions are met by all measures; we show this via several examples. The reasonable conditions are related to continuity of correlations, which has not been previously discussed. Continuity is an important quality if one wants to probe quantum correlations in the laboratory. We show that most types of quantum discord are continuous but none are continuous with respect to the measurement basis used for optimization.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 62 ◽  
Author(s):  
Bruno Leggio ◽  
Anna Napoli ◽  
Hiromichi Nakazato ◽  
Antonino Messina

In the general framework of d 1 × d 2 mixed states, we derive an explicit bound for bipartite negative partial transpose (NPT) entanglement based on the mixedness characterization of the physical system. The derived result is very general, being based only on the assumption of finite dimensionality. In addition, it turns out to be of experimental interest since some purity-measuring protocols are known. Exploiting the bound in the particular case of thermal entanglement, a way to connect thermodynamic features to the monogamy of quantum correlations is suggested, and some recent results on the subject are given a physically clear explanation.


2005 ◽  
Vol 12 (02) ◽  
pp. 189-205 ◽  
Author(s):  
Gerardo Adesso ◽  
Alessio Serafini ◽  
Fabrizio Illuminati

Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal (i.e. referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or, in general, by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two-mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1 × N-mode partitions.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345024 ◽  
Author(s):  
STEFANO OLIVARES ◽  
MATTEO G. A. PARIS

We address the balance of quantum correlations for continuous variable (CV) states. In particular, we consider a class of feasible tripartite CV pure states and explicitly prove two Koashi–Winter-like conservation laws involving Gaussian entanglement of formation (EoF), Gaussian quantum discord and sub-system Von Neumann entropies. We also address the class of tripartite CV mixed states resulting from the propagation in a noisy environment, and discuss how the previous equalities evolve into inequalities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tonghua Liu ◽  
Shuo Cao ◽  
Shumin Wu

Abstract The preparation of quantum systems and the execution of quantum information tasks between distant users are always affected by gravitational and relativistic effects. In this work, we quantitatively analyze how the curved space-time background of the Earth affects the classical and quantum correlations between photon pairs that are initially prepared in a two-mode squeezed state. More specifically, considering the rotation of the Earth, the space-time around the Earth is described by the Kerr metric. Our results show that these state correlations, which initially increase for a specific range of satellite’s orbital altitude, will gradually approach a finite value with increasing height of satellite’s orbit (when the special relativistic effects become relevant). More importantly, our analysis demonstrates that the changes of correlations generated by the total gravitational frequency shift could reach the level of $$<0.5\%$$ < 0.5 % within the satellite’s height at geostationary Earth orbits.


2015 ◽  
Vol 29 (19) ◽  
pp. 1550124 ◽  
Author(s):  
M. Daoud ◽  
R. Ahl Laamara ◽  
S. Seddik

A recursive approach to determine the Hilbert–Schmidt measure of pairwise quantum discord in a special class of symmetric states of k qubits is presented. We especially focus on the reduced states of k qubits obtained from a balanced superposition of symmetric n-qubit states (multiqubit Schrödinger cat states) by tracing out n-k particles (k = 2, 3, …, n-1). Two pairing schemes are considered. In the first one, the geometric discord measuring the correlation between one qubit and the parity grouping (k-1) qubits is explicitly derived. This uses recursive relations between the Fano–Bloch correlation matrices associated with subsystems comprising k, k-1, … and two particles. A detailed analysis is given for two-, three- and four-qubit systems. In the second scheme, the subsystem comprising the (k-1) qubits is mapped into a system of two logical qubits. We show that these two bipartition schemes are equivalents in evaluating the pairwise correlation in multiqubits systems. The explicit expressions of classical states presenting zero discord are derived.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450027 ◽  
Author(s):  
Bao Liu ◽  
Zheng Hu ◽  
Xi-Wen Hou

The characterization of quantum discord (QD) and geometric discord (GD) has mostly concentrated on two-qubit states since the minimization in both discords is a daunting task for high-dimensional states. Numerical calculations of both discords are carried out for a generic bipartite state. When one-dimensional orthogonal projectors for a local measurement on n-dimensional Hilbert space are realized by the generators and the Euler angles of SU (n), the optimal measurements have a figure of merit that includes n(n - 1) Euler parameters. As an representative example, such projectors and two kinds of algorithms are used to estimate both discords for two-qutrit mixed states in recent literature. The generalized negativity as a measure of quantum entanglement is calculated for reference purposes. For those states with one parameter the discords and the negativity respectively display the nonlinear and the linear function of the parameter, with different turning points. However, they are positively correlated in the suitable ranges of the parameter for those states. The hierarchy of those quantities is discussed as well. Those shed new light on the understanding of QDs and quantum entanglement of mixed states in high-dimensions.


2019 ◽  
Vol 17 (02) ◽  
pp. 1950018 ◽  
Author(s):  
Supriyo Dutta ◽  
Bibhas Adhikari ◽  
Subhashish Banerjee

This work is at the interface of graph theory and quantum mechanics. Quantum correlations epitomize the usefulness of quantum mechanics. Quantum discord is an interesting facet of bipartite quantum correlations. Earlier, it was shown that every combinatorial graph corresponds to quantum states whose characteristics are reflected in the structure of the underlined graph. A number of combinatorial relations between quantum discord and simple graphs were studied. To extend the scope of these studies, we need to generalize the earlier concepts applicable to simple graphs to weighted graphs, corresponding to a diverse class of quantum states. To this effect, we determine the class of quantum states whose density matrix representation can be derived from graph Laplacian matrices associated with a weighted directed graph and call them graph Laplacian quantum states. We find the graph theoretic conditions for zero and nonzero quantum discord for these states. We apply these results on some important pure two qubit states, as well as a number of mixed quantum states, such as the Werner, Isotropic, and [Formula: see text]-states. We also consider graph Laplacian states corresponding to simple graphs as a special case.


Axioms ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Diego G. Bussandri ◽  
Tristán M. Osán ◽  
Pedro W. Lamberti ◽  
Ana P. Majtey

We built a new set of suitable measures of correlations for bipartite quantum states based upon a recently introduced theoretical framework [Bussandri et al. in Quantum Inf. Proc. 18:57, 2019]. We applied these measures to examine the behavior of correlations in two-qubit states with maximally mixed marginals independently interacting with non-dissipative decohering environments in different dynamical scenarios of physical relevance. In order to get further insight about the physical meaning of the behavior of these correlation measures we compared our results with those obtained by means of well-known correlation measures such as quantum mutual information and quantum discord. On one hand, we found that the behaviors of total and classical correlations, as assessed by means of the measures introduced in this work, are qualitatively in agreement with the behavior displayed by quantum mutual information and the measure of classical correlations typically used to calculate quantum discord. We also found that the optimization of all the measures of classical correlations depends upon a single parameter and the optimal value of this parameter turns out to be the same in all cases. On the other hand, regarding the measures of quantum correlations used in our studies, we found that in general their behavior does not follow the standard quantum discord D . As the quantification by means of standard quantum discord and the measures of quantum correlations introduced in this work depends upon the assumption that total correlations are additive, our results indicate that this property needs a deeper and systematic study in order to gain a further understanding regarding the possibility to obtain reliable quantifiers of quantum correlations within this additive scheme.


Sign in / Sign up

Export Citation Format

Share Document