scholarly journals Main results of experimental studies of reinforced concrete structures of high-strength concrete B100 round and circular cross sections in torsion with bending

Author(s):  
Vladimir I Travush ◽  
Nikolay I Karpenko ◽  
Vladimir I Kolchunov ◽  
Semen S Kaprielov ◽  
Alexey I Dem’yanov ◽  
...  

Aim of the research to verify the proposed calculating apparatus and accumulate new experimental data on the complex resistance of reinforced concrete structures, experimental studies of such structures made of high-strength concrete of circular and circular cross-section were conducted at the testing base of the South-West State University. Method is experimental-theoretical. Results of experimental research the plots of the deflections and rotation angles, the dependency of deformations of concrete according to the testimony of the outlets of electrodesorption with respect to the calculated cross section 1-1. The main deformations of elongation and shortening of concrete were determined; the reinforcement was selected in such a way that in the stage preceding the destruction, it reached fluidity, so the stresses in the reinforcement are known. It is established that for reinforced concrete structures made of high-strength concrete of circular cross-section, as a rule, there is the development of two cracks, i.e. the round shape of the cross-section slightly reduces the concentration due to the structure of high-strength concrete. For the annular section there were several cracks, of which stands out the one on which the destruction occurs. On the steps preceding the destruction, this crack begins to prevail over the rest and has a maximum opening width. On the basis of experimental studies of reinforced concrete structures made of high-strength concrete of square and box sections, reliable data on the complex stress-strain state in the studied areas of resistance, such as: the values of the generalized load of cracking , and destruction ,, its level relative to the limit load; the distance between the cracks at different levels of cracking (up to the moment of destruction, as a rule, two or three levels are formed); crack widths at the level of the axis of the working armature, at a distance of two diameters from the axes of the armature and along the entire crack profile at various stages of loading, from which it follows that the crack opening at the level of the axis of reinforcement in 2-3 times less compared with the crack opening on the removal of 1.5-2 diameters of the working axis (longitudinal and transverse) reinforcement; the coordinates of the spatial formation of cracks; schematic drawings on tablets of education, development and opening of cracks of reinforced concrete constructions in torsion with bending. Thus, the experimental studies and the result provide an opportunity to test the developed computational model and its working hypotheses for assessing the resistance of reinforced concrete structures made of high-strength concrete in torsion with bending.

2021 ◽  
pp. 58-66
Author(s):  
O. D. RUBIN ◽  
◽  
S. E. LISICHKIN ◽  
S. YU. KUZNETSOV ◽  
I. V. BAKLYKOV

The results of experimental data of studies of reinforced concrete structures made of light high-strength concrete in a wide range of reinforcement coefficients (0.015-0.036) are presented. Experimental studies of a series of beam-type reinforced concrete structures made of light high-strength concrete were carried out according to the fi rst and second groups of limiting states to substantiate the use of such structures in hydraulic engineering. It should be noted that the complex technical solutions for a floating bulkhead are under development for the construction of a gravity-type foundation (including an abutment in an earth dam). Recommendations on the use of the obtained results of experimental studies in hydraulic engineering building including when designing a reinforced concrete structure of a dry floating bulkhead for the construction of a gravity-type foundation made of lightweight high-strength concrete are given.


2020 ◽  
Vol 91 (5) ◽  
pp. 3-12
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
I.V. PECHENEV ◽  
◽  
...  

The article presents the results of experimental studies of the complex resistance of reinforced concrete structures with a square cross-section, made of B25 heavy-concrete, which includes graphs of deflection and rotation angles, as well as the dependence of concrete deformations obtained from the indications of strain gauges. The main deformations of elongation (and shortening) of concrete were determined using data, obtained from the proposed scheme for installing strain gauges. Rebar for experimental samples was selected in such a way that it achieved yield stress in the stage before destruction. The obtained experimental data is required for evaluation of proposed methods for calculation of structures with a rectangle cross section structures in the considered stress-strain state, for example, to check the values of the general load of crack appearing, its value relative to the distruction load; distance between cracks at different levels of crack formation, width of cracks opening at the level of the main reinforcement axis and at the distance of two diameters from the reinforcement axis, coordinates of spatial cracks formation, schemes of crack formation, crack development and crack opening. It was found, that in the tested structures the width of crack opening at the level of the main reinforcement axis is two to three times less than at a distance of two diameters from the main longitudal (or transverse) reinforcement axis. The parameters and crack patterns established during the experiments allow us to clarify the accepted working hypotheses for constructing a calculation model of the resistance in reinforced concrete structures of rectangular cross-section under torsion with bending.


2013 ◽  
Vol 431 ◽  
pp. 161-166
Author(s):  
Kang Qi

Circular pier are widely used in bridge substructure. Strength and ductility are two important indicators reflect its aseismic performance. Based on the analysis of complete bending moment-curvature curve curvature, bending strength and ductility on reinforced concrete circular pier cross-section, this paper analyzes the aseismic performance of high-strength concrete circular pier. And it can provide reference for using high strength concrete more reasonable.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Sign in / Sign up

Export Citation Format

Share Document