Autonomous Vehicle Driving Algorithms, Deep Learning-based Sensing Technologies, and Big Geospatial Data Analytics in Smart Sustainable Intelligent Transportation Systems

2021 ◽  
Vol 13 (2) ◽  
pp. 23
2021 ◽  
Vol 54 (4) ◽  
pp. 1-37
Author(s):  
Azzedine Boukerche ◽  
Xiren Ma

Vision-based Automated Vehicle Recognition (VAVR) has attracted considerable attention recently. Particularly given the reliance on emerging deep learning methods, which have powerful feature extraction and pattern learning abilities, vehicle recognition has made significant progress. VAVR is an essential part of Intelligent Transportation Systems. The VAVR system can fast and accurately locate a target vehicle, which significantly helps improve regional security. A comprehensive VAVR system contains three components: Vehicle Detection (VD), Vehicle Make and Model Recognition (VMMR), and Vehicle Re-identification (VRe-ID). These components perform coarse-to-fine recognition tasks in three steps. In this article, we conduct a thorough review and comparison of the state-of-the-art deep learning--based models proposed for VAVR. We present a detailed introduction to different vehicle recognition datasets used for a comprehensive evaluation of the proposed models. We also critically discuss the major challenges and future research trends involved in each task. Finally, we summarize the characteristics of the methods for each task. Our comprehensive model analysis will help researchers that are interested in VD, VMMR, and VRe-ID and provide them with possible directions to solve current challenges and further improve the performance and robustness of models.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1136
Author(s):  
David Augusto Ribeiro ◽  
Juan Casavílca Silva ◽  
Renata Lopes Rosa ◽  
Muhammad Saadi ◽  
Shahid Mumtaz ◽  
...  

Light field (LF) imaging has multi-view properties that help to create many applications that include auto-refocusing, depth estimation and 3D reconstruction of images, which are required particularly for intelligent transportation systems (ITSs). However, cameras can present a limited angular resolution, becoming a bottleneck in vision applications. Thus, there is a challenge to incorporate angular data due to disparities in the LF images. In recent years, different machine learning algorithms have been applied to both image processing and ITS research areas for different purposes. In this work, a Lightweight Deformable Deep Learning Framework is implemented, in which the problem of disparity into LF images is treated. To this end, an angular alignment module and a soft activation function into the Convolutional Neural Network (CNN) are implemented. For performance assessment, the proposed solution is compared with recent state-of-the-art methods using different LF datasets, each one with specific characteristics. Experimental results demonstrated that the proposed solution achieved a better performance than the other methods. The image quality results obtained outperform state-of-the-art LF image reconstruction methods. Furthermore, our model presents a lower computational complexity, decreasing the execution time.


2020 ◽  
Vol 69 (11) ◽  
pp. 12510-12520
Author(s):  
Arpit Shukla ◽  
Pronaya Bhattacharya ◽  
Sudeep Tanwar ◽  
Neeraj Kumar ◽  
Mohsen Guizani

2019 ◽  
Vol 8 (3) ◽  
pp. 5708-5712

Recently there has been growing interest in intelligent transportation system because the road accidents become biggest problems of mankind and the casualties of accident also increases rapidly every year. The casualties are very often witnessed in heavy and light motor vehicles. Moreover, the accidents occur mainly due to carelessness and drowsy feeling of the driver. Intelligent transportation systems use deep learning mechanism to detect drowsiness of the driver and alert the same to driver. It results in reduction of accidents. The driver’s behaviour during drowsiness is detected by three types of approaches. One approach deploys the sensors in steering wheel and accelerator of the vehicle and analyzes the signal sent by the sensors to detect the drowsiness. Second approach focuses on measuring the heart rate, pulse rate and brain signals etc to predict the drowsiness. Third approach uses the facial expression of the driver such as blinking rate of eye, eye closure and yawning etc. The cause for most of the road accidents is driver’s drowsiness. Therefore, in this paper, the behavioural changes of driver is accounted to detect the drowsiness of the driver. Eye movement and yawning are two behavioural changes of driver is considered in this paper. There are many CNN based deep learning architectures such AlexNet, VGGNet, ResNet. In this paper, we propose the drowsiness detection using ResNet because this method works on the principle of passing the output to the next la. The performance of proposed mechanism detects the drowsiness of the driver better than AlexNet and VGGNet.


Sign in / Sign up

Export Citation Format

Share Document