scholarly journals The Smart Cyber-Physical Systems of Sustainable Industry 4.0: Innovation-driven Manufacturing Technologies, Creative Cognitive Computing, and Advanced Robotics

2019 ◽  
Vol 7 (3) ◽  
pp. 7 ◽  
2018 ◽  
Author(s):  
Patrick Mota ◽  
Ari Melo Mariano ◽  
Simone Borges Simão Monteiro

Understanding Industry 4.0 is to assimilate the elements that comprise it and to understand the processes necessary to implement it. The objective of this study was to perform a taxonomy regarding the theme industry 4.0, presenting the main contributions, obstacles and perspective regarding the theme. To reach this goal, this study began with a systematic review through the Theory of the Consolidated Meta-Analytic Approach, presenting the main scientific contributions and key factors of success. In the second part, an interview was conducted, with six researchers in the field of industry 4.0, to discuss the results of the scientific literature. There were nine key factors to the success of industry 4.0 (Cyber-Physical Systems (CPS), Internet of Things (IOT), Additive Manufacturing, Digital Manufacture (Simulation), Smart Factory, Big Data and Analytics, Cloud Computing, Digital Security and Advanced Robotics) and the major obstacles to implementing these factors. In addition, the opinions of the specialists were evaluated and categorized them by descending hierarchical classification and confirmatory factorial analysis, offering a practical model of implementation.


Industry 4.0 has already arrived in the world and is leaving no stone unturned. It can be quickly summarized into just 4 components being, Cyber- physical systems, IOT, Cloud Computing and Cognitive computing. Current technologies, which uses soil moisture sensor require hard wiring and manual interventions. Other timer technologies irrigate the plants at certain interval without checking the need. In the proposed system, robotics with Artificial Intelligence are integrated with IoT systems to allow the farmer who is available at a different location than the farm to get the necessary updates involving the irrigation process taking place in the field. The system will also drain the excess water. The proposed system would allow better water management, higher yield and reduce the required manpower


2018 ◽  
Vol 247 ◽  
pp. 00037 ◽  
Author(s):  
Marek Woliński

Industry 4.0 creates so called “smart factory”, what involves cyber - physical systems, the Internet of things, cloud computing and cognitive computing. One of design principles in Industry 4.0 is technical assistance, understood as the ability of cyber - physical systems to support humans physically by conducting a range of tasks that are unpleasant, too exhausting or unsafe for their human co - workers. Such new approach to production will affect, among others, area of workplace safety and machine safety - also, at the field of explosion safety for works performed in areas with potentially explosive atmospheres. At present, this important issue is regulated in EU by Directive 1999/92/EC (ATEX Worker Directive), Directive 2014/34/EU (ATEX Directive), harmonized national law and technical standards. However, one of important challenges in implementation of idea of Industry 4.0 is lack of regulations, standards and forms of certification. Presented paper discusses problem if existing regulations concerning explosion safety are adequate for such new conditions, sometimes referred to as the fourth industrial revolution.


2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 487 ◽  
Author(s):  
Mahmoud Elsisi ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

The modern control infrastructure that manages and monitors the communication between the smart machines represents the most effective way to increase the efficiency of the industrial environment, such as smart grids. The cyber-physical systems utilize the embedded software and internet to connect and control the smart machines that are addressed by the internet of things (IoT). These cyber-physical systems are the basis of the fourth industrial revolution which is indexed by industry 4.0. In particular, industry 4.0 relies heavily on the IoT and smart sensors such as smart energy meters. The reliability and security represent the main challenges that face the industry 4.0 implementation. This paper introduces a new infrastructure based on machine learning to analyze and monitor the output data of the smart meters to investigate if this data is real data or fake. The fake data are due to the hacking and the inefficient meters. The industrial environment affects the efficiency of the meters by temperature, humidity, and noise signals. Furthermore, the proposed infrastructure validates the amount of data loss via communication channels and the internet connection. The decision tree is utilized as an effective machine learning algorithm to carry out both regression and classification for the meters’ data. The data monitoring is carried based on the industrial digital twins’ platform. The proposed infrastructure results provide a reliable and effective industrial decision that enhances the investments in industry 4.0.


Logistics ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Athina G. Bright ◽  
Stavros T. Ponis

In the last decade, the Industry 4.0 concept has introduced automation and cyber-physical systems as the core elements of future logistics, supported by an array of technologies, such as augmented reality (AR) providing the necessary support for the digital transformation of manufacturing and logistics and the smartification and digital refinement of traditional pre-Industry 4.0 processes. This paper studies the influence and the potential of gamification techniques in supporting innovative Industry 4.0-enhanced processes in the contemporary warehouse work ecosystem. Gamification in the workplace aims to motivate the employees and increase their involvement in an activity, while at the same time creating a sense of an everyday different experience rather than a set of repetitive and monotonous tasks. Since the design of such a system is a complex process, the most widespread design frameworks are studied, and the emphasis is on the principal game elements and their connection to mobilization mechanisms. Finally, an initial proposal of a gamification framework to support the AR-enhanced order picking process in contemporary logistics centers is provided with an emphasis on the mechanics of a fair and functional reward system. The proposed approach aims to showcase the potential alignment of business processes to human motivation, respecting the differences between tasks and the workers’ cognitive workload.


2021 ◽  
Vol 58 ◽  
pp. 176-192
Author(s):  
Diego G.S. Pivoto ◽  
Luiz F.F. de Almeida ◽  
Rodrigo da Rosa Righi ◽  
Joel J.P.C. Rodrigues ◽  
Alexandre Baratella Lugli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document