Optimum prediction of atmospheric temperature using GPS radio occultation measurements

2017 ◽  
Vol 919 (1) ◽  
pp. 48-51
Author(s):  
N.H. Javadov ◽  
R.A. Eminov ◽  
N.Ya. Ismailov

The matters of optimum forecasting atmospheric temperature using GPS radio occultation measurements are considered. The analysis of the available data regarding to the comparison of temperature measurements using radio occultation method and radiosondes was made. As a result it was concluded that the mean value of those results’ difference and also the mean quadratic deviation of these difference increases in common by increase of the forecasting time. In order to prevent surplus loading of telemetry channels and broadcasting inaccurate forecast values via them the optimization of general procedure of radio occultation temperature measurements are carried out using fine functions method. For optimization the concurrent parameters, changing on antiphase order are determined. It is found out that utilization of fine function method taking into account the applied optimization criterion and some limitation conditions make it possible to optimize the whole procedure of forecasting atmospheric temperature using the GPS radio occultation measurements.

2014 ◽  
Vol 7 (11) ◽  
pp. 3947-3958 ◽  
Author(s):  
T. Rieckh ◽  
B. Scherllin-Pirscher ◽  
F. Ladstädter ◽  
U. Foelsche

Abstract. Characteristics of the lapse rate tropopause are analyzed globally for tropopause altitude and temperature using global positioning system (GPS) radio occultation (RO) data from late 2001 to the end of 2013. RO profiles feature high vertical resolution and excellent quality in the upper troposphere and lower stratosphere, which are key factors for tropopause determination, including multiple ones. RO data provide measurements globally and allow examination of both temporal and spatial tropopause characteristics based entirely on observational measurements. To investigate latitudinal and longitudinal tropopause characteristics, the mean annual cycle, and inter-annual variability, we use tropopauses from individual profiles as well as their statistical measures for zonal bands and 5° × 10° bins. The latitudinal structure of first tropopauses shows the well-known distribution with high (cold) tropical tropopauses and low (warm) extra-tropical tropopauses. In the transition zones (20 to 40° N/S), individual profiles reveal varying tropopause altitudes from less than 7 km to more than 17 km due to variability in the subtropical tropopause break. In this region, we also find multiple tropopauses throughout the year. Longitudinal variability is strongest at northern hemispheric mid latitudes and in the Asian monsoon region. The mean annual cycle features changes in amplitude and phase, depending on latitude. This is caused by different underlying physical processes (such as the Brewer–Dobson circulation – BDC) and atmospheric dynamics (such as the strong polar vortex in the southern hemispheric winter). Inter-annual anomalies of tropopause parameters show signatures of El Niño–Southern Oscillation (ENSO), the quasi–biennial oscillation (QBO), and the varying strength of the polar vortex, including sudden stratospheric warming (SSW) events. These results are in good agreement with previous studies and underpin the high utility of the entire RO record for investigating latitudinal, longitudinal, and temporal tropopause characteristics globally.


2010 ◽  
Vol 37 (3) ◽  
pp. n/a-n/a
Author(s):  
A. K. Steiner ◽  
G. Kirchengast ◽  
B. C. Lackner ◽  
B. Pirscher ◽  
M. Borsche ◽  
...  

2019 ◽  
Vol 19 (10) ◽  
pp. 6985-7000
Author(s):  
◽  
Toshitaka Tsuda ◽  
Masatomo Fujiwara

Abstract. Using COSMIC GPS Radio Occultation (RO) observations from January 2007 to December 2016, we retrieved temperature profiles with the height resolution of about 0.1 km in the upper troposphere and lower stratosphere (UTLS). We investigated the distribution of static stability (N2) and the zonal structure of the tropopause inversion layer (TIL) in the tropics, where a large change in the temperature gradient occurs associated with sharp variations in N2. We show the variations in the mean N2 profiles in coordinates relative to the cold-point tropopause (CPT). A very thin (<1 km) layer is found with average maximum N2 in the range of 11.0–12.0×10-4 s−2. The mean and standard deviation of TIL sharpness, defined as the difference between the maximum N2 (max⁡N2) and minimum N2 (min⁡N2) within ±1 km of the CPT, is (10.5±3.7)×10-4 s−2. The max⁡N2 is typically located within 0.5 km above CPT. We focused on the variation in TIL sharpness in two longitude regions, 90–150∘ E (Maritime Continent; MC) and 170–230∘ E (Pacific Ocean; PO), with different land–sea distribution. Seasonal variations in TIL sharpness and thickness were related to the deep convective activity represented by low outgoing longwave radiation (OLR) during the Australian and Asian monsoons. The deviation from the mean sharpness (sharpness anomaly) was out of phase with the OLR anomaly in both the MC and PO. The correlation between the sharpness anomaly over the MC and PO and the sea surface temperature (SST) Niño 3.4 index was −0.66 and +0.88, respectively. During La Niña (SST Niño 3.4 <-0.5 K) in the MC and El Niño (SST Niño 3.4 >+0.5 K) in the PO, warmer SSTs in the MC and PO produce more active deep convection that tends to force the air upward to the tropopause layer and increase the temperature gradient there. The intraseasonal variation in sharpness anomaly during slow and fast episodes of the Madden–Julian Oscillation (MJO) demonstrates that eastward propagation of the positive sharpness anomaly is associated with organized deep convection. Deep convection during MJO will tend to decrease N2 below CPT and increase N2 above CPT, thus enlarging the TIL sharpness. Convective activity in the tropics is a major control on variations in tropopause sharpness at intraseasonal to interannual timescales.


2014 ◽  
Vol 7 (5) ◽  
pp. 4693-4727 ◽  
Author(s):  
T. Rieckh ◽  
B. Scherllin-Pirscher ◽  
F. Ladstädter ◽  
U. Foelsche

Abstract. Characteristics of the lapse rate tropopause are analyzed globally for tropopause altitude and temperature using Global Positioning System (GPS) Radio Occultation (RO) data from late 2001 to 2012. RO profiles feature high vertical resolution and excellent quality in the upper troposphere and lower stratosphere, which are key factors for tropopause determination, including multiple ones. Furthermore, global coverage is reached on a monthly basis, allowing to examine both temporal and spatial characteristics thoroughly. To investigate latitudinal and longitudinal tropopause characteristics, the mean annual cycle, and inter-annual variability, we use tropopauses from individual profiles as well as their monthly mean and median for 10° zonal bands. The latitudinal structure of first tropopauses shows the well-known distribution with high (cold) tropical tropopauses and low (warm) extratropical tropopauses. In the transition zones (20° N/S to 40° N/S), individual profiles reveal varying tropopause altitudes from 7 km to 17 km due to the influence of the subtropical jets. In this region, we also find multiple tropopauses throughout the year. Longitudinal variability is strongest at northern hemispheric mid latitudes and in the Asian monsoon region. The mean annual cycle features changes in amplitude and phase depending on latitude. This is caused by different underlying physical processes (such as the Brewer-Dobson Circulation) and atmospheric dynamics (such as the very strong polar vortex in southern hemispheric winter). Inter-annual anomalies of tropopause parameters show signatures of El Niño–Southern Oscillation, the Quasi-Biennial Oscillation, and the varying strength of the polar vortex, including sudden stratospheric warming events.


2011 ◽  
Vol 4 (9) ◽  
pp. 1777-1784 ◽  
Author(s):  
P. Alexander ◽  
A. de la Torre ◽  
P. Llamedo ◽  
R. Hierro ◽  
T. Schmidt ◽  
...  

Abstract. GPS radio occultation satellite data allowed to analyze in the last decade for the first time a large amount of atmospheric temperature profiles including both the troposphere and the stratosphere all over the globe. Wave amplitude enhancements have been systematically observed around tropopause levels, which are apparently due to artifacts generated by any digital filter used to isolate the wave components from these data. We present a new filtering method which can be equally applied to temperature or refractivity profiles. It was tested with synthetic temperature data based on NCEP reanalyes and observed wave climatologies and it was also statistically validated with GPS radio occultation profiles from the COSMIC mission. The suggested technique significantly reduces artificial enhancements around the tropopause, mainly at low latitudes, where a sharp lapse rate change usually exists. This represents an improvement in comparison to previous applications of standard filters. In addition it would allow the study of longer vertical wavelengths than previously done with other filtering procedures.


1972 ◽  
Vol 52 (2) ◽  
pp. 245-268 ◽  
Author(s):  
G. K. Batchelor

The dispersion considered consists of a large number of identical small rigid spheres with random positions which are falling through Newtonian fluid under gravity. The volume fraction of the spheres (c) is small compared with unity. The dispersion is statistically homogeneous, and the axes of reference are chosen so that the mean volume flux across any stationary surface is zero. The problem is to determine the mean value of the velocity of a sphere (U). In §3 there is described a systematic and rigorous procedure which overcomes the familiar difficulty presented by the occurrence of divergent integrals, essentially by the choice of a quantity V whose mean value can be found exactly and which has the same long-range dependence on the position of a second sphere as U so that the mean of U – V can be expressed in terms of an absolutely convergent integral. The result is that, correct to order c, the mean value of U is U0(1 – 6.55 c), where U0, is the velocity of a single sphere in unbounded fluid. The only assumption made in the calculation is that the centres of spheres in the dispersion take with equal probability all positions such that no two spheres overlap; arguments are given in support of this assumption, which is expected to be valid only when the spheres are identical. Calculations which assume a simple regular arrangement of the spheres or which adopt a cell model of the hydrodynamic interactions give the quite different result that the change in the mean speed of fall is proportional to $c^{\frac{1}{3}}$, for reasons which are made clear.The general procedure described here is expected to be applicable to other problems concerned with the effect of particle interactions on the average properties of dispersions with small volume fraction of the particles.


2011 ◽  
Vol 4 (10) ◽  
pp. 2087-2092 ◽  
Author(s):  
K. Zhang ◽  
E. Fu ◽  
D. Silcock ◽  
Y. Wang ◽  
Y. Kuleshov

Abstract. GPS radio occultation (RO) has been recognised as an alternative atmospheric upper air observation technique due to its distinct features and technological merits. The CHAllenging Minisatellite Payload (CHAMP) RO satellite and FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) RO constellation together have provided about ten years of high quality global coverage RO atmospheric profiles. This technique is best used for meteorological studies in the difficult-to-access areas such as deserts and oceans. To better understand and use RO data, effective quality assessment using independent radiosonde data and its associated collocation criteria used in tempo-spatial domain are important. This study compares GPS RO retrieved temperature profiles from both CHAMP (between May 2001 and October 2008) and FORMOSAT-3/COSMIC (between July 2006 and December 2009) with radiosonde data from 38 Australian radiosonde stations. The overall results show a good agreement between the two data sets. Different collocation criteria within 3 h and 300 km between the profile pairs have been applied and the impact of these different collocation criteria on the evaluation results is found statistically insignificantly. The CHAMP and FORMOSAT-3/COSMIC temperature profiles have been evaluated at 16 different pressure levels and the differences between GPS RO and radiosonde at different levels of the atmosphere have been studied. The result shows that the mean temperature difference between radiosonde and CHAMP is 0.39 °C (with a standard deviation of 1.20 °C) and the one between radiosonde and FORMOSAT-3/COSMIC is 0.37 °C (with a standard deviation of 1.24 °C). Different collocation criteria have been applied and insignificant differences were identified amongst the results.


Sign in / Sign up

Export Citation Format

Share Document