The research study in the convergence of the results of processing radar images Sentinel-1A with field observations of agricultural sites

2019 ◽  
Vol 950 (8) ◽  
pp. 52-58
Author(s):  
D.V. Mozer ◽  
Е.L. Levin ◽  
A.K. Satbergenova

The manuscript discusses how to monitor the condition of seedlings on agricultural fields planted with winter wheat, fodder maize and areas of fir forest located in the Freudenstadt district of Baden-Wuerttemberg in Germany. To solve the range of agricultural problems , they often use modern technologies such as satellite remote sensing of the Earth. The paper displays the monitoring results of the Sentinel-1A radar satellites scenes, as well as visual spectrum imagery of field observations are presented when leaving directly to terrain segments. The processing deployed data chain, consisting of 11 Sentinel-1A scenes acquired in the timefrane from March to November 2018. Specifically, the SNAP Sentinel Toolboxes software was used to process the radar satellite images Sentinel-1А, the. Based on the the research outcomes the Committee of Agriculture of the Freudenstadt district is able to predict the yield amount with high accuracy due to good data convergence. According to the study, the following three important problems can be resolved by means of Sentinel-1A imagery

2020 ◽  
Vol 3 (2) ◽  
pp. 58-73
Author(s):  
Vijay Bhagat ◽  
Ajaykumar Kada ◽  
Suresh Kumar

Unmanned Aerial System (UAS) is an efficient tool to bridge the gap between high expensive satellite remote sensing, manned aerial surveys, and labors time consuming conventional fieldwork techniques of data collection. UAS can provide spatial data at very fine (up to a few mm) and desirable temporal resolution. Several studies have used vegetation indices (VIs) calculated from UAS based on optical- and MSS-datasets to model the parameters of biophysical units of the Earth surface. They have used different techniques of estimations, predictions and classifications. However, these results vary according to used datasets and techniques and appear very site-specific. These existing approaches aren’t optimal and applicable for all cases and need to be tested according to sensor category and different geophysical environmental conditions for global applications. UAS remote sensing is a challenging and interesting area of research for sustainable land management.


Author(s):  
MP Ramachandran ◽  
MK Agarwal ◽  
DA Daniel

Image registration is important in geostationary weather satellites. Achieving consistent registration of the images with respect to the geographical locations on the Earth is here of interest. The consistency in the registration between the images is affected whenever the orbital inclination and eccentricity are not zero. The imaging payload has a two-axis scanning mirror to capture the Earth image. The above orbital effects together with scan mirror pointing direction are the factors that cause the misregistration. This paper presents an onboard algorithm that provides the scan compensation angles due to the above factors and achieves consistent registration. The compensation varies every second, which is the time taken for each scan. Hence it is preferred to have computations onboard than to have ground based bulk uplinks for the scan compensation. The paper presents an algorithm that is useful, say, when (i) the onboard computing capabilities are limited, (ii) the navigation accuracies are coarse and (iii) the image resampling is not preferred on the ground and the payload data are directly used for weather applications. The paper also discusses the tests that were carried on the onboard software in order to validate its performance in achieving the consistent registration before launch. This is done by using another independent software tool which is also described in detail. Image motion algorithm was invoked for a couple of days in INSAT 3DR. The atmospheric wind vector deduced directly from the satellite images is given at the end.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hao Zhou ◽  
Ya-Juan Feng ◽  
Chao Wang ◽  
Teng Huang ◽  
Yi-Rong Liu ◽  
...  

Water, the most important molecule on the Earth, possesses many essential and unique physical properties that are far from completely understood, partly due to serious difficulties in identifying the precise...


2021 ◽  
Vol 130 ◽  
pp. 108098
Author(s):  
Abdulhakim M. Abdi ◽  
Romain Carrié ◽  
William Sidemo-Holm ◽  
Zhanzhang Cai ◽  
Niklas Boke-Olén ◽  
...  

2021 ◽  
Author(s):  
Octavian Dumitru ◽  
Gottfried Schwarz ◽  
Mihai Datcu ◽  
Dongyang Ao ◽  
Zhongling Huang ◽  
...  

<p>During the last years, much progress has been reached with machine learning algorithms. Among the typical application fields of machine learning are many technical and commercial applications as well as Earth science analyses, where most often indirect and distorted detector data have to be converted to well-calibrated scientific data that are a prerequisite for a correct understanding of the desired physical quantities and their relationships.</p><p>However, the provision of sufficient calibrated data is not enough for the testing, training, and routine processing of most machine learning applications. In principle, one also needs a clear strategy for the selection of necessary and useful training data and an easily understandable quality control of the finally desired parameters.</p><p>At a first glance, one could guess that this problem could be solved by a careful selection of representative test data covering many typical cases as well as some counterexamples. Then these test data can be used for the training of the internal parameters of a machine learning application. At a second glance, however, many researchers found out that a simple stacking up of plain examples is not the best choice for many scientific applications.</p><p>To get improved machine learning results, we concentrated on the analysis of satellite images depicting the Earth’s surface under various conditions such as the selected instrument type, spectral bands, and spatial resolution. In our case, such data are routinely provided by the freely accessible European Sentinel satellite products (e.g., Sentinel-1, and Sentinel-2). Our basic work then included investigations of how some additional processing steps – to be linked with the selected training data – can provide better machine learning results.</p><p>To this end, we analysed and compared three different approaches to find out machine learning strategies for the joint selection and processing of training data for our Earth observation images:</p><ul><li>One can optimize the training data selection by adapting the data selection to the specific instrument, target, and application characteristics [1].</li> <li>As an alternative, one can dynamically generate new training parameters by Generative Adversarial Networks. This is comparable to the role of a sparring partner in boxing [2].</li> <li>One can also use a hybrid semi-supervised approach for Synthetic Aperture Radar images with limited labelled data. The method is split in: polarimetric scattering classification, topic modelling for scattering labels, unsupervised constraint learning, and supervised label prediction with constraints [3].</li> </ul><p>We applied these strategies in the ExtremeEarth sea-ice monitoring project (http://earthanalytics.eu/). As a result, we can demonstrate for which application cases these three strategies will provide a promising alternative to a simple conventional selection of available training data.</p><p>[1] C.O. Dumitru et. al, “Understanding Satellite Images: A Data Mining Module for Sentinel Images”, Big Earth Data, 2020, 4(4), pp. 367-408.</p><p>[2] D. Ao et. al., “Dialectical GAN for SAR Image Translation: From Sentinel-1 to TerraSAR-X”, Remote Sensing, 2018, 10(10), pp. 1-23.</p><p>[3] Z. Huang, et. al., "HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Images", IEEE Transactions on Geoscience and Remote Sensing, 2020, pp.1-18.</p>


Author(s):  
Viacheslav V. Krylenko ◽  
◽  
Marina V. Krylenko ◽  
Alexander A. Aleynikov ◽  
◽  
...  

The study of the relief of large coastal accumulative forms, based on modern technologies, is rele-vant for solving many applied problems. Coastal and underwater bars, shoals, banks are characteristic elements of large coastal accumulative forms’ geosystems. Previously existing methods of relief re-searches, especially underwater, were labor-intensive and expensive. Accordingly, the development and implementation of new methods of geographical research are necessary. The Dolgaya Spit, includ-ing its underwater shoal and the Elenin Bank, is one of the largest accumulative forms of the Sea of Azov. The purpose of our work was to obtain new information on the relief structure and the shoreline dynamics of the Dolgaya Spit based on the use of new research methods. Digital models of surface and underwater relief were built on the basis of processing Sentinel-2 satellite images and data from unmanned aerial photography. The subsequent analysis allowed identify regularities that reflect the current and previous hydro-lithodynamic conditions that determined the transformation of the Dolgaya Spit during its evolution. The fulfilled studies confirmed the possibility of successful use of modern remote methods for studying the relief of coastal accumulative forms.


2021 ◽  
Vol 15 (2) ◽  
pp. 134-142
Author(s):  
Boris Zeylik ◽  
Yalkunzhan Arshamov ◽  
Refat Baratov ◽  
Alma Bekbotayeva

Purpose. Exploration and predicting the prospective areas in the Zhezkazgan ore region to set up detailed prospecting and evaluation works using new integrated technologies of prediction constructions in the mineral deposits geology. Methods. An integrated methodological approach is used, including methods for deciphering the Earth’s remote sensing (ERS) data, the use of geophysical data and methods of analogy and actualism. All constructions are made in accordance with the principles of shock-explosive tectonics (SET). Prediction constructions are started with the selection of remote sensing data for the studied region and interpretation based on the processing of radar satellite images obtained from the Radarsat-1 satellite. The radar satellite images are processed in the Erdas Imagine software package. Findings. New local prospective areas have been identified, within which it is expected to discover the deposits. Their reserves are to replenish the depleted ore base in the Zhezkazgan region. Area of the gravity maximum 1 (the Near), considered to be the most promising, is located in close proximity to the city of Zhezkazgan; area of the gravity maximum 2 (the Middle); area of the gravity maximum 3 (the Distant-Tabylga); area of the gravity maximum 6 (the Central). A prospective area has been also revealed, overlaid by a loose sediment cover and located inside the Terekty ring structure, as well as the area of a thick stratum of pyritized grey sandstones, which is adjacent to the Sh-2 well drilled to the south of the Zhezkazgan field. Originality. The use of a new prediction technology, in contrast to the known ones, is conditioned by the widespread use of the latest remote information from satellite images, which increases the accuracy of identifying the prospective areas of fields. Practical implications. The new technology for predicting mineral deposits makes it possible to significantly reduce the areas exposed to priority prospecting, which provides significant cost savings.


Satellite images occupy a signifi cant place in the Earth Sciences. This fully applies to geography. Images of the Earth from space are used in various activities: to assess crops, to establish the boundaries of a phenomenon, to determine the degree of contamination of land or ocean surfaces, to search for minerals, and so on. But in school geography, satellite images are used very rarely - for example, to prove the sphericity of the Earth or to show the view of each continent from space. The purpose of this article is to highlight the methods of using satellite images in geography lessons at school and to create tasks based on these means of training. Main material. The history of using satellite images in school geography has been considered in the article. Advantages and disadvantages of satellite images as training tools are also noted. The role of satellite images in the formation of geographical representations is highlighted by the authors. These images realistically depict many natural phenomena (atmospheric fronts, cyclones, dust storms, etc.). Therefore, as a means of visualization, they contribute to the formation of memory representations in schoolchildren. Examples of a number of satellite images show how they can be used in teaching geography. The article off ers a methodical way of the use of satellite images at diff erent stages of learning. These images can be used to explain the training material, repeat it, control knowledge, and so on. Satellite images can be used to solve cartographic tasks. As practice has shown, we can perform creative tasks based on images. Conclusions. Satellite images play an important role in the system of teaching geography. The use of satellite images allows us to improve the pupils’ interest in the subject. Satellite images form geographical memory representations create a visual image of the natural appearance of the Earth. The study of educational opportunities of the Earth’s images from space has revealed three groups of requirements: pedagogical, technical and specific, determined by the content of school geography. The teacher should select satellite images based on the content of educational tasks of school geography.


2021 ◽  
Author(s):  
Justinas Kilpys ◽  
Laurynas Jukna ◽  
Edvinas Stonevičius ◽  
Rasa Šimanauskienė ◽  
Linas Bevainis

Title in English: Earth Observations from Space. There are more than 150 environmental satellites orbiting the Earth, and they are constantly monitoring its surface and the processes happening on it. This textbook offers an introduction to the physical concepts of satellite observations, describes how sensor data is transformed into information about the Earth’s surface and how it can be applied. The scientific background of satellite remote sensing is illustrated using examples from applications in agriculture, forestry, environmental monitoring, disaster risk management, and many other areas. Book provides insight into how satellite remote sensing is used to explore and monitor natural and anthropocentric processes on the Earth and serves as introduction to the practical remote sensing.


Sign in / Sign up

Export Citation Format

Share Document