scholarly journals Kajian Sistematik: Efek Gen Multi Drug Resistance-1 pada Farmakokinetik Klopidogrel

2019 ◽  
pp. 65-72
Author(s):  
Rasmaya Niruri ◽  
Rini Noviyani ◽  
Indah Mei Rahajeng

Multi Drug Resistance-1 (MDR-1) gene polymorphisms encoding for P-glycoprotein can affect clopidogrel intestinal absorption. This systematic review aim to identify the impact of MDR-1 gene 3435 variants on clopidogrel pharmacokinetics. Literature review were retrieved from MEDLINE, Science Direct, Scopus, Clinical Key, ProQuest and Google Scholar databases. The articles are critically reviewed and analyzed to answer this systematic review’s aim. The result showed that, in patients with cardiovascular disease, the peak plasma concentration (Cmax) and the total area under the plasma concentration–time curve (AUC) of clopidogrel and its active metabolites were lower in 3435TT compared to 3435CC. Nevertheless, the variants of MDR-1 gene were not significantly correlated to the plasma concentration in healthy subjects. Clopidogrel pharmacokinetic profile varied widely between MDR-1 3435 variants and subjects.

2017 ◽  
Vol 4 (6) ◽  
pp. 245
Author(s):  
Prashanth Vennapanja ◽  
Ajmera Ramarao

Objective: The aim of the study is whether the impact of Efavirenz and Lopinavir will increase the plasma level of Glibenclamide or not. Efavirenz and Lopinavir is an antiretroviral drug to treat HIV AIDS and inhibits cytochrome P450-3A4. Multiple CYP isoforms are involved in the metabolism of Glibenclamide like CYP2C8 and CYP3A4. Hence there is more possibility of Efavirenz and Lopinavir to inhibit the metabolism of Glibenclamide by inhibiting CYP 3A4.Methods: Efavirenz and Lopinavir (10 mg/kg,p.o.) alone and along with Glibenclamide (10 mg/kg, p.o.) was given to normal and diabetic rats. PK/PD parameters were studied. In the rats co-treated with Efavirenz and Lopinavir and Glibenclamide.Results: The pharmacokinetic parameters like clearance of Glibenclamide was reduced, peak plasma concentration, area under the plasma concentration time curve and elimination half-life were significantly increased when compared to pioglitazone treated rats.Conclusions: This study revealed that lopinavir and efavirenz affected the disposition of Glibenclamide in rats probably by the inhibition of CYP3A4, leading to increasing Glibenclamide concentrations that could increase the efficacy of Glibenclamide or it may causes severe hypoglycemia. Therefore, its warrants to use relatively less dose of Glibenclamide than the normal dose.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Nakano ◽  
Shuhei Osaka ◽  
Yusuke Sabu ◽  
Kei Minowa ◽  
Saeko Hirai ◽  
...  

AbstractProgressive familial intrahepatic cholestasis (PFIC), a rare inherited disorder, progresses to liver failure in childhood. We have shown that sodium 4-phenylbutyrate (NaPB), a drug approved for urea cycle disorders (UCDs), has beneficial effects in PFIC. However, there is little evidence to determine an optimal regimen for NaPB therapy. Herein, a multicenter, open-label, single-dose study was performed to investigate the influence of meal timing on the pharmacokinetics of NaPB. NaPB (150 mg/kg) was administered orally 30 min before, just before, and just after breakfast following overnight fasting. Seven pediatric PFIC patients were enrolled and six completed the study. Compared with postprandial administration, an approved regimen for UCDs, preprandial administration significantly increased the peak plasma concentration and area under the plasma concentration-time curve of 4-phenylbutyrate by 2.5-fold (95% confidential interval (CI), 2.0–3.0;P = 0.003) and 2.4-fold (95% CI, 1.7–3.2;P = 0.005). The observational study over 3 years in two PFIC patients showed that preprandial, but not prandial or postprandial, oral treatment with 500 mg/kg/day NaPB improved liver function tests and clinical symptoms and suppressed the fibrosis progression. No adverse events were observed. Preprandial oral administration of NaPB was needed to maximize its potency in PFIC patients.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 782
Author(s):  
Ji-Min Kim ◽  
Seong-Wook Seo ◽  
Dong-Gyun Han ◽  
Hwayoung Yun ◽  
In-Soo Yoon

Repaglinide (RPG), a rapid-acting meglitinide analog, is an oral hypoglycemic agent for patients with type 2 diabetes mellitus. Quercetin (QCT) is a well-known antioxidant and antidiabetic flavonoid that has been used as an important ingredient in many functional foods and complementary medicines. This study aimed to comprehensively investigate the effects of QCT on the metabolism of RPG and its underlying mechanisms. The mean (range) IC50 of QCT on the microsomal metabolism of RPG was estimated to be 16.7 (13.0–18.6) μM in the rat liver microsome (RLM) and 3.0 (1.53–5.44) μM in the human liver microsome (HLM). The type of inhibition exhibited by QCT on RPG metabolism was determined to be a mixed inhibition with a Ki of 72.0 μM in RLM and 24.2 μM in HLM as obtained through relevant graphical and enzyme inhibition model-based analyses. Furthermore, the area under the plasma concentration versus time curve (AUC) and peak plasma concentration (Cmax) of RPG administered intravenously and orally in rats were significantly increased by 1.83- and 1.88-fold, respectively, after concurrent administration with QCT. As the protein binding and blood distribution of RPG were observed to be unaltered by QCT, it is plausible that the hepatic first-pass and systemic metabolism of RPG could have been inhibited by QCT, resulting in the increased systemic exposure (AUC and Cmax) of RPG. These results suggest that there is a possibility that clinically significant pharmacokinetic interactions between QCT and RPG could occur, depending on the extent and duration of QCT intake from foods and dietary supplements.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Christopher M. Rubino ◽  
Sujata M. Bhavnani ◽  
Jeffery S. Loutit ◽  
Elizabeth E. Morgan ◽  
Dan White ◽  
...  

ABSTRACTMeropenem-vaborbactam is a fixed combination of the novel β-lactamase inhibitor vaborbactam and the carbapenem antibiotic meropenem, developed for the treatment of serious infections caused by drug-resistant Gram-negative bacteria. The safety, tolerability, and pharmacokinetics (PK) of vaborbactam and meropenem following single and multiple ascending doses of each study drug administered alone or combined were evaluated in 76 healthy adult subjects in a randomized, placebo-controlled, double-blind study. Subjects were enrolled in 1 of 5 dose cohorts (receiving 250 to 2,000 mg vaborbactam and/or 1,000 to 2,000 mg meropenem) alone or in combination. No subjects discontinued the study due to adverse events (AEs), and no serious AEs were observed. The pharmacokinetics of meropenem and vaborbactam were similar when given alone or in combination; all evaluated plasma PK exposure measures (peak plasma concentration, area under the plasma concentration-time curve [AUC] from time zero to the last measurable concentration area under the plasma concentration-time curve, and AUC from time zero to infinity) were similar for the study drugs alone versus those in combination, indicating no pharmacokinetic interaction between meropenem and vaborbactam. Across all treatments, 47 to 64% of an administered meropenem dose and 75 to 95% of vaborbactam was excreted unchanged in the urine over 48 h postdose. Meropenem and vaborbactam, when given alone or in combination, have similar pharmacokinetic properties, with no plasma or urine PK drug-drug interactions, and are well tolerated. These findings supported further clinical investigation of the combination product. (This study is registered at ClinicalTrials.gov under registration no. NCT01897779.)


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cecilia Nwadiuto Amadi ◽  
Wisdom Izuchukwu Nwachukwu

Abstract Background Cola nitida is commonly chewed in many West African cultures to ease hunger pangs and sometimes for their stimulant and euphoriant qualities. Metoclopramide is a known substrate for P-gp, SULT2A1 and CYP2D6 and studies have revealed that caffeine- a major component of Cola nitida can induce P-glycoprotein (P-gp), SULT2A1 and SULT1A1, hence a possible drug interaction may occur on co-administration. The aim of this study was to investigate the pharmacokinetic interactions of Cola nitida and metoclopramide in rabbits. Methods The study was performed in two stages using five healthy male rabbits with a 1-week washout period between treatments. Stage one involved oral administration of metoclopramide (0.5 mg/kg) alone while in the second stage, metoclopramide (0.5 mg/kg) was administered concurrently with Cola nitida (0.7 mg/kg). Blood samples were collected after each stage at predetermined intervals and analyzed for plasma metoclopramide concentration using HPLC. Results Compared with control, the metoclopramide/Cola nitida co-administration produced a decrease in plasma concentration of metoclopramide at all the time intervals except at the 7th hour. The following pharmacokinetic parameters were also decreased: area under the curve (51%), peak plasma concentration (39%), half-life (51%); while an increase in elimination rate constant (113%) and clearance rate (98%) were noted indicating rapid elimination of the drug. A minimal decrease in absorption rate (10%) was also observed. Conclusions The results of this study reveal a possible herb-drug interaction between Cola nitida and metoclopramide.


Author(s):  
Naveed Shaik ◽  
Robert R. LaBadie ◽  
Brian Hee ◽  
Geoffrey Chan

Abstract Purpose Glasdegib is being developed for indications in myeloid malignancies. The effect of renal impairment on the pharmacokinetics (PK) of a single, oral, 100-mg glasdegib dose under fasted conditions was assessed. Methods Open-label, parallel-group study (NCT03596567). Participants of good general health were selected and categorized, based on their estimated glomerular filtration rate, into normal (≥ 90 mL/min), moderate (≥ 30 to < 60 mL/min), or severe (< 30 mL/min) renal impairment groups. Blood samples were collected up to 120 h post-dose. PK exposure parameters were calculated using non-compartmental analysis. Results All 18 participants completed the study. Respectively, ratios of adjusted geometric means (90% confidence interval) for glasdegib area under the curve from time 0 to infinity and peak plasma concentration versus normal participants were 205% (142–295%) and 137% (97–193%) in the moderate group, and 202% (146–281%) and 120% (77–188%) in the severe group. Glasdegib median time to peak plasma concentration was 2.0 h in both impairment groups and 1.5 h in the normal group. Mean oral clearance was decreased by approximately 50% in both renal impairment groups compared with the normal group. The plasma-free fraction of glasdegib was not altered by renal impairment. Five all-causality adverse events were reported in three participants; two were considered treatment-related. Conclusion The similar changes in exposure observed for participants with renal impairment, coupled with the known safety data from clinical experience, suggest that a lower starting dose of glasdegib may not be required for moderate or severe renal impairment. Trial registration: ClinicalTrials.gov: NCT03596567 (started May 17, 2018).


2021 ◽  
Author(s):  
Ramesh Boinpally ◽  
Abhijeet Jakate ◽  
Matthew Butler ◽  
Antonia Periclou

Aim: To evaluate pharmacokinetic interactions of atogepant with sumatriptan, an open-label, randomized, crossover study was conducted. Patients & methods: Thirty healthy adults received atogepant 60 mg, sumatriptan 100 mg, or coadministered drugs. Primary end point was geometric mean ratios (GMRs) and 90% CIs of interventions for area under the plasma concentration–time curve from time 0 to t (AUC0-t) or infinity (AUC0-∞) and peak plasma concentration (Cmax). Results: Atogepant GMRs for AUC0-t and AUC0-∞ versus with sumatriptan were within 90% CI 0.80–1.25, indicating no interaction; atogepant Cmax was reduced by 22% (GMR: 0.78; 90% CI: 0.69–0.89) with sumatriptan. Sumatriptan GMRs for AUC0-t, AUC0-∞ and Cmax versus with atogepant were within 90% CI 0.80–1.25. Conclusion: Atogepant with sumatriptan had no clinically relevant pharmacokinetic interactions.


1999 ◽  
Vol 17 (2) ◽  
pp. 685-685 ◽  
Author(s):  
Ronald L. Drengler ◽  
John G. Kuhn ◽  
Larry J. Schaaf ◽  
Gladys I. Rodriguez ◽  
Miguel A. Villalona-Calero ◽  
...  

PURPOSE: We conducted a phase I dose-escalation trial of orally administered irinotecan (CPT-11) to characterize the maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), pharmacokinetic profile, and antitumor effects in patients with refractory malignancies. PATIENTS AND METHODS: CPT-11 solution for intravenous (IV) use was mixed with CranGrape juice (Ocean Spray, Lakeville-Middleboro, MA) and administered orally once per day for 5 days every 3 weeks to 28 patients. Starting dosages ranged from 20 to 100 mg/m2/d. RESULTS: Grade 4 delayed diarrhea was the DLT at the 80 mg/m2/d dosage in patients younger than 65 years of age and at the 66 mg/m2/d dosage in patients 65 or older. The other most clinically significant toxicity of oral CPT-11 was neutropenia. A linear relationship was found between dose, peak plasma concentration, and area under the concentration-time curve (AUC) for both CPT-11 and SN-38 lactone, implying no saturation in the conversion of irinotecan to SN-38. The mean metabolic ratio ([AUCSN-38 total + AUCSN-38G total]/AUCCPT-11 total) was 0.7 to 0.8, which suggests that oral dosing results in presystemic conversion of CPT-11 to SN-38. An average of 72% of SN-38 was maintained in the lactone form during the first 24 hours after drug administration. One patient with previously treated colorectal cancer and liver metastases who received oral CPT-11 at the 80 mg/m2/d dosage achieved a confirmed partial response. CONCLUSION: The MTD and recommended phase II dosage for oral CPT-11 is 66 mg/m2/d in patients younger than 65 years of age and 50 mg/m2/d in patients 65 or older, administered daily for 5 days every 3 weeks. The DLT of diarrhea is similar to that observed with IV administration of CPT-11. The biologic activity and favorable pharmacokinetic characteristics make oral administration of CPT-11 an attractive option for further clinical development.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1000
Author(s):  
Jane Yu ◽  
Benjamin Kimble ◽  
Jacqueline M. Norris ◽  
Merran Govendir

The pharmacokinetic profile of mefloquine was investigated as a preliminary study towards a potential treatment for feline coronavirus infections (such as feline infectious peritonitis) or feline calicivirus infections. Mefloquine was administered at 62.5 mg orally to seven clinically healthy cats twice weekly for four doses and mefloquine plasma concentrations over 336 h were measured using high pressure liquid chromatography (HPLC). The peak plasma concentration (Cmax) after a single oral dose of mefloquine was 2.71 ug/mL and time to reach Cmax (Tmax) was 15 h. The elimination half-life was 224 h. The plasma concentration reached a higher level at 4.06 ug/mL when mefloquine was administered with food. Adverse effects of dosing included vomiting following administration without food in some cats. Mild increases in serum symmetric dimethylarginine (SDMA), but not creatinine, concentrations were observed. Mefloquine may provide a safe effective treatment for feline coronavirus and feline calicivirus infections in cats.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 144-147
Author(s):  
DIllisher Rai ◽  
Gajendra Prasad Rauniar

Our study aimed to assess and compare the bioavailability of Eptoin 100 mg and Epileptin 100mg tablets in Nepalese healthy volunteers. A randomized, two-treatment cross-over study with two weeks’ wash-out period was conducted in 12 healthy non-smoker and non-alcoholic Nepalese male volunteers over a period of 6 months in the department of Clinical Pharmacology and Therapeutic at B. P. Koirala Institute of Health Sciences, Dharan, Nepal after approval from the Institutional Review Committee. The participants were randomized using sealed envelope system and received a single 100 mg oral tablet of either of the formulations with a two week washout period. Blood samples were collected predose and at regular intervals postdose upto 72 hours. Plasma phenytoin levels were estimated by reverse phase high performance liquid chromatography. The analytical method was validated prior to the start of study. Cmax (Peak Plasma Concentration), Tmax (Time to achieve maximum Plasma Concentration), AUC0-72 (Area under plasma concentration time curve 0 to 72 hours), AUC0-∞ (Area under plasma concentration time curve 0 to ∞) and T½ (Elimination half-life) and Kel (Elimination rate constant) were calculated and 80-120% margin (90% confidence interval) was used to assess bioequivalence. ANOVA test was used to analyze the data at P-value of 0.05. All volunteers completed the study. The log-transformed values of Cmax, Tmax, AUC0-t, and AUC0-∞ of the both formulations were within the specified limits and were bioequivalent according to the regulatory definition of bioequivalence based on the rate and extent of absorption. Both products can be considered equally effective in medical practice. Keywords: Bioavailability, Bioequivalence, healthy volunteer, Nepal, phenytoin sodium.


Sign in / Sign up

Export Citation Format

Share Document