scholarly journals PERFORMANCE AND EXHAUST GAS TEMPERATURE INVESTIGATION OF CERAMIC, METALLIC AND FeCrAl CATALYTIC CONVERTER IN GASOLINE ENGINE

SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Hadi Pranoto ◽  
Dafit Feriyanto ◽  
Supaat Zakaria

Catalytic converter (CATCO) and its effect on engine performance and exhaust gas temperature became an exciting field in automotive research. In this study purposed to compare existing CATCO which is ceramic and metallic with FeCrAl CATCO that treated with a combination of ultrasonic bath and electroplating technique in 30 minutes holding time (UB+EL 30 min). This study proposed to select an appropriate CATCO that used in a gasoline engine to increase the performance and to reduce the exhaust gas temperature as well as its potential to reduce the exhaust gas emission. Mitsubishi 4G93 conducted this analysis with 1.8 L and 10.5 compression ratio with a variable speed of 100, 2000 and 3000 rpm and different engine load of 10, 20 and 30%. The result shows that the FeCrAl CATCO was more useful to reduce fuel consumption up to 66.42% and increase torque up to 15.79% as well as reduce exhaust gas temperature up to 30.11% as compared to ceramic and metallic CATCO. It can be concluded that FeCrAl CATCO coated by UB+EL 30 min was recommended to increase engine performance and to reduce exhaust gas emission.

2012 ◽  
Vol 424-425 ◽  
pp. 347-351 ◽  
Author(s):  
Yong Sheng Shi ◽  
Jun Jie Yue ◽  
Yun Xue Song

Based on the research of complexity and non-linearity of aero-engine exhaust gas temperature (EGT) system, a regularization chaotic prediction model was proposed to build short time forecasting model of EGT. In this paper, in order to gain the best parameter to improve the accuracy of the forecasting model, a simple search algorithm arithmetic was adopted. The simulation analysis shows that the proposed forecasting model obviously exceeded the traditional chaotic forecasting model on prediction accuracy. Therefore, this arithmetic is efficient and feasible for a short-term prediction of aero-engine exhaust gas temperature


Author(s):  
Jaspreet Hira ◽  
Basant Singh Sikarwar ◽  
Rohit Sharma ◽  
Vikas Kumar ◽  
Prakhar Sharma

In this research work, a surge tank is developed and utilised in the diesel engine for controlling the NOX emission. This surge tank acts as a damper for fluctuations caused by exhaust gases and also an intercooler in reducing the exhaust gas temperature into the diesel engine intake manifold. With the utilisation of the surge tank, the NOX emission level has been reduced to approximately 50%. The developed surge tank is proved to be effective in maintaining the circulation of water at appropriate temperatures. A trade-off has been established between the engine performance parameters including the brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and all emission parameters including HC and CO.


Author(s):  
Howard Harris ◽  
Ivan Piñeiro ◽  
Tom Norris

A field test was conducted on a three splitter diffuser and a vaneless diffuser (no splitters) to determine, the pressure recovery coefficient, effects on engine performance, exhaust collector temperature distribution, and exhaust gas noise. This paper presents the cause of the mechanical failure of the three splitter diffuser, basic diffuser design, field test instrumentation, and the test results. The test results found the vaneless diffuser had a higher pressure recovery, created a lower back pressure, and did not raise the exhaust gas temperature (EGT) nor fuel consumption of the engine, as compared to the three splitter diffuser.


2020 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Abdi Hanra Sebayang ◽  
Husin Ibrahim ◽  
Surya Dharma ◽  
Arridina Susan Silitonga ◽  
Berta Br Ginting ◽  
...  

The depletion of fossil fuels, rising of earth temperatures and declining of air quality are an unavoidable phenomenon today. Bioethanol fuel is one solution to reduce this problem that comes from renewable raw materials. The purpose of this study is to investigate engine performance and exhaust emissions at gasoline engine by using the sorghum seeds bioethanol-pertalite blends with different mixed ratios (10%, 15%, and 20%). The test is performed on a four-stroke gasoline engine without modification. Engine speeds vary from 1000 to 4000 rpm, and properties of the sorghum seeds bioethanol-pertalite blends are measured and analyzed. In addition, engine torque, brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) as well as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) emissions are measured. The results show that BSFC decreased while BTE increased for a fuel blends containing 20% bioethanol at 3500 rpm engine speed, with each maximum value of 246.93 g/kWh and 36.28%. It is also found that CO and HC emissions are lower for the sorghum seeds bioethanol-pertalite blends. Based on the research results, it can be concluded that the sorghum seeds bioethanol-pertalite blends can improve engine performance and reduce exhaust gas emissions. Keywords: bioethanol; pertalite; performance engine; exhaust gas emission; alternatif fuel.


2017 ◽  
Vol 26 (2) ◽  
pp. 84 ◽  
Author(s):  
A. Samuel Raja ◽  
A. Valan Arasu

In countries like India, transportation by a two wheeled motorcycle is very common owing to affordable cost, easy handling and traffic congestion. Most of these bikes use single cylinder air cooled four-stroke spark ignition (SI) engines of displacement volume ranging from 100 cm3 to 250 cm3. CO and HC emissions from such engines when started after a minimum stop-time of 12 hours or more (cold-start emissions) are higher than warmed-up emissions. In the present study, a 150 cm3 single cylinder air cooled SI engine was tested for cold start emissions and exhaust gas temperature. Different gasoline-ethanol blends (E0 to E20) were used as fuel expecting better oxidation of HC and CO emissions with additional oxygen present in ethanol. The effect of glow plug assisted exhaust gas ignition (EGI) and use of catalytic converter on cold start emissions were studied separately using the same blends. Results show that with gasoline-ethanol blends, cold start CO and HC emissions were less than that with neat gasoline. And at an ambient temperature of 30±1°C, highest emission reductions were observed with E10. EGI without a catalytic converter had no significant effect on emissions except increasing the exhaust gas temperature. The catalytic converter was found to be active only after 120 seconds in converting cold start CO, HC and NOx. Use of a catalytic converter proves to be a better option than EGI in controlling cold start emissions with neat gasoline or gasoline-ethanol blends.


Sign in / Sign up

Export Citation Format

Share Document