INVESTIGATION OF THE COMPOSITION OF URANIUM MICROPARTICLES USING QUANTITATIVE EPMA AND MICRO-RAMAN SPECTROMETRY

2021 ◽  
Author(s):  
Mouad ESSANI ◽  
Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26029-26036
Author(s):  
Vered Heleg-Shabtai ◽  
Amalia Zaltsman ◽  
Mali Sharon ◽  
Hagai Sharabi ◽  
Ido Nir ◽  
...  

We developed and optimized surface-enhanced Raman spectrometry (SERS) methods for trace analysis of explosive vapour and particles using a hand-held Raman spectrometer in the field.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Dong Wang ◽  
Rui Wen ◽  
Julian Henderson ◽  
Xingjun Hu ◽  
Wenying Li

AbstractThe Hetian Bizili site in Lop County, located on the southern route of the Silk Road in Xinjiang, China, was a trade and cultural hub between the East and the West in ancient times. In 2016, a large number of glass beads were unearthed from the 40 tombs excavated on this site. In this study we determined the chemical compositions and manufacturing technology of bodies and decorations of twelve glass beads from the M5 tomb of Bizili by using LA-ICP-AES, EDXRF, Raman Spectrometry, and SR-μCT. The chemical compositions of the beads were all Na2O–CaO–SiO2, with plant ash mainly used as a flux. Lead antimonate and lead stannate were used as the opacifying agents. We detected elevated levels of boron and high levels of phosphorus in some beads: this is discussed in the context of the type of flux used and the possible use of a P-rich opacifier. Some of the beads with high contents of aluminum may potentially come from Pakistan. In terms of manufacturing technology, the craftsmen made ‘eye’ beads in different ways and also trail decorated beads.


1999 ◽  
Vol 5 (S2) ◽  
pp. 78-79
Author(s):  
C. Merlet ◽  
X. Llovet ◽  
F. Salvat

Studies of x-ray emission from thin films on substrates using an electron probe microanalyzer (EPMA) provide useful information on the characteristics of x-ray generation by electron beams. In this study, EPMA measurements of multilayered samples were performed in order to test and improve analytical and numerical models used for quantitative EPMA. These models provide relatively accurate results for samples consisting of layers with similar average atomic numbers, because of their similar properties regarding electron transport and x-ray generation. On the contrary, these models find difficulties to describe the process when the various layers have very different atomic numbers. In a previous work, we studied the surface ionization of thin copper films of various thicknesses deposited on substrates with very different atomic numbers. In the present communication, the study is extended to the case of multilayered specimens.The studied specimens consisted of thin copper films deposited on a carbon layer which, in turn, was placed on a variety of single-element substrates, ranging from Be to Bi.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


1989 ◽  
Vol 97 (1132) ◽  
pp. 1466-1470
Author(s):  
Atsushi CHINO ◽  
Hideo IWATA ◽  
Sirou TORIZUKA ◽  
Kazuya YABUTA

Sign in / Sign up

Export Citation Format

Share Document