scholarly journals Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells

2021 ◽  
Author(s):  
Francesca Gasparin ◽  
2019 ◽  
Vol 38 (3) ◽  
pp. 293-296 ◽  
Author(s):  
Miguel A. Pleitez ◽  
Asrar Ali Khan ◽  
Alice Soldà ◽  
Andriy Chmyrov ◽  
Josefine Reber ◽  
...  

2018 ◽  
Author(s):  
Miguel A. Pleitez ◽  
Asrar Ali Khan ◽  
Josefine Reber ◽  
Andriy Chmyrov ◽  
Markus R. Seeger ◽  
...  

We developed mid-infrared optoacoustic microscopy (MiROM), a bond-selective imaging modality that overcomes water/tissue opacity and depth limitations of mid-infrared sensing allowing uncompromised live-cell/thick-tissue mid-infrared microscopy with up to three orders of magnitudehigher sensitivity than other vibrational imaging modalities; such as Raman. We showcase the functional label-free biomolecular imaging capabilities of MiROM by monitoring the spatiotemporal dynamics of lipids and proteins during lipolysis in living adipocytes. Since MiROM, contrary to Ramanmodalities, is not only able to detect lipids and proteins, but also important metabolites such as glucose without the need of labels, here we discuss how MiROM yields novel functional label-free abilities for a broader range of analytical studies in living cells and tissues.


2011 ◽  
Vol 6 (11) ◽  
pp. 1748-1760 ◽  
Author(s):  
Ralf Schröder ◽  
Johannes Schmidt ◽  
Stefanie Blättermann ◽  
Lucas Peters ◽  
Nicole Janssen ◽  
...  

Author(s):  
André Gemeinhardt ◽  
Matthew P. McDonald ◽  
Katharina König ◽  
Michael Aigner ◽  
Andreas Mackensen ◽  
...  
Keyword(s):  

Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Richard Schasfoort ◽  
Fikri Abali ◽  
Ivan Stojanovic ◽  
Gestur Vidarsson ◽  
Leon Terstappen

SPR cytometry entails the measurement of parameters from intact cells using the surface plasmon resonance (SPR) phenomenon. Specific real-time and label-free binding of living cells to sensor surfaces has been made possible through the availability of SPR imaging (SPRi) instruments and researchers have started to explore its potential in the last decade. Here we will discuss the mechanisms of detection and additionally describe the problems and issues of mammalian cells in SPR biosensing, both from our own experience and with information from the literature. Finally, we build on the knowledge and applications that has already materialized in this field to give a forecast of some exciting applications for SPRi cytometry.


2018 ◽  
Author(s):  
Chawin Ounkomol ◽  
Sharmishtaa Seshamani ◽  
Mary M. Maleckar ◽  
Forrest Collman ◽  
Gregory R. Johnson

Understanding living cells as integrated systems, a challenge central to modern biology, is complicated by limitations of available imaging methods. While fluorescence microscopy can resolve subcellular structure in living cells, it is expensive, slow, and damaging to cells. Here, we present a label-free method for predicting 3D fluorescence directly from transmitted light images and demonstrate that it can be used to generate multi-structure, integrated images.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Joachim Wiest

Label-free monitoring of living cells is used in various applications such as drug development, toxicology, regenerative medicine or environmental monitoring. The most prominent methods for monitoring the extracellular acidification, oxygen consumption, electrophysiological activity and morphological changes of living cells are described. Furthermore, the intelligent mobile lab (IMOLA) – a computer controlled system integrating cell monitoring and automated cell cultivation – is described as an example of a cell-based system for microphysiometry. Results from experiments in the field of environmental monitoring using algae are presented. An outlook toward the development of an organ-on-chip technology is given.


2020 ◽  
Vol 1 (2) ◽  
pp. 100017
Author(s):  
Dimitra Pouli ◽  
Hong-Thao Thieu ◽  
Elizabeth M. Genega ◽  
Laura Baecher-Lind ◽  
Michael House ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1496
Author(s):  
Yijun Cai ◽  
Yanfen Hang ◽  
Yuanguo Zhou ◽  
Jinfeng Zhu ◽  
Jingwen Yang ◽  
...  

In this study, a label-free multi-resonant graphene-based biosensor with periodic graphene nanoribbons is proposed for detection of composite vibrational fingerprints in the mid-infrared range. The multiple vibrational signals of biomolecules are simultaneously enhanced and detected by different resonances in the transmission spectrum. Each of the transmission dips can be independently tuned by altering the gating voltage applied on the corresponding graphene nanoribbon. Geometric parameters are investigated and optimized to obtain excellent sensing performance. Limit of detection is also evaluated in an approximation way. Besides, the biosensor can operate in a wide range of incident angles. Electric field intensity distributions are depicted to reveal the physical insight. Moreover, another biosensor based on periodic graphene nanodisks is further proposed, whose performance is insensitive to the polarization of incidence. Our research may have a potential for designing graphene-based biosensor used in many promising bioanalytical and pharmaceutical applications.


2004 ◽  
Vol 25 (21-22) ◽  
pp. 3740-3745 ◽  
Author(s):  
Jurjen Emmelkamp ◽  
Floor Wolbers ◽  
Helene Andersson ◽  
Ralph S. DaCosta ◽  
Brian C. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document