scholarly journals Label-free, High-Resolution Optical Metabolic Imaging of Human Cervical Precancers Reveals Potential for Intraepithelial Neoplasia Diagnosis

2020 ◽  
Vol 1 (2) ◽  
pp. 100017
Author(s):  
Dimitra Pouli ◽  
Hong-Thao Thieu ◽  
Elizabeth M. Genega ◽  
Laura Baecher-Lind ◽  
Michael House ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3048
Author(s):  
Rok Podlipec ◽  
Esther Punzón-Quijorna ◽  
Luka Pirker ◽  
Mitja Kelemen ◽  
Primož Vavpetič ◽  
...  

The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i1-i1
Author(s):  
Gilbert Hangel ◽  
Cornelius Cadrien ◽  
Philipp Lazen ◽  
Sukrit Sharma ◽  
Julia Furtner ◽  
...  

Abstract OBJECTIVES Neurosurgical resection in gliomas depends on the precise preoperative definition of the tumor and its margins to realize a safe maximum resection that translates into a better patient outcome. New metabolic imaging techniques could improve this delineation as well as designate targets for biopsies. We validated the performance of our fast high-resolution whole-brain 3D-magnetic resonance spectroscopic imaging (MRSI) method at 7T in high-grade gliomas (HGGs) as first step to this regard. METHODS We measured 23 patients with HGGs at 7T with MRSI covering the whole cerebrum with 3.4mm isotropic resolution in 15 min. Quantification used a basis-set of 17 neurochemical components. They were evaluated for their reliability/quality and compared to neuroradiologically segmented tumor regions-of-interest (necrosis, contrast-enhanced, non-contrast-enhanced+edema, peritumoral) and histopathology (e.g., grade, IDH-status). RESULTS We found 18/23 measurements to be usable and ten neurochemicals quantified with acceptable quality. The most common denominators were increases of glutamine, glycine, and total choline as well as decreases of N-acetyl-aspartate and total creatine over most tumor regions. Other metabolites like taurine and serine showed mixed behavior. We further found that heterogeneity in the metabolic images often continued into the peritumoral region. While 2-hydroxy-glutarate could not be satisfyingly quantified, we found a tendency for a decrease of glutamate in IDH1-mutant HGGs. DISCUSSION Our findings corresponded well to clinical tumor segmentation but were more heterogeneous and often extended into the peritumoral region. Our results corresponded to previous knowledge, but with previously not feasible resolution. Apart from glycine/glutamine and their role in glioma progression, more research on the connection of glutamate and others to specific mutations is necessary. The addition of low-grade gliomas and statistical ROI analysis in a larger cohort will be the next important steps to define the benefits of our 7T MRSI approach for the definition of spatial metabolic tumor profiles.


2021 ◽  
Author(s):  
Arielle Planchette ◽  
Cédric Schmidt ◽  
Olivier Burri ◽  
Mercedes Gomez de Agüero ◽  
Aleksandra Radenovic ◽  
...  

Abstract The limitations of 2D microscopy constrain our ability to observe and understand tissue-wide networks that are, by nature, 3-dimensional. Optical projection tomography enables the acquisition of large volumes (ranging from micrometres to centimetres) in various tissues, with label-free capacities for the observation of auto-fluorescent signals as well fluorescent-labelled targets of interest in multiple channels. We present a multi-modal workflow for the characterization of both structural and quantitative parameters of the mouse small intestine. As proof of principle, we evidence its applicability for imaging the mouse intestinal immune compartment and surrounding mucosal structures. We quantify the volumetric size and spatial distribution of Isolated Lymphoid Follicles (ILFs) and quantify density of villi throughout centimetre long segments of intestine. Furthermore, we exhibit the age- and microbiota-dependence for ILF development, and leverage a technique that we call reverse-OPT for identifying and homing in on regions of interest. Several quantification capabilities are displayed, including villous density in the autofluorescent channel and the size and spatial distribution of the signal of interest at millimetre-scale volumes. The concatenation of 3D image acquisition with the reverse-OPT sample preparation and a 2D high-resolution imaging modality adds value to interpretations made in 3D. This cross-modality referencing technique is found to provide accurate localisation of ROIs and to add value to interpretations made in 3D. Importantly, OPT may be used to identify sparsely-distributed regions of interest in large volumes whilst retaining compatibility with high-resolution microscopy modalities, including confocal microscopy. We believe this pipeline to be approachable for a wide-range of specialties, and to provide a new method for characterisation of the mouse intestinal immune compartment.


2021 ◽  
Author(s):  
Chenxi Qian ◽  
Kun Miao ◽  
Li-En Lin ◽  
Xinhong Chen ◽  
Jiajun Du ◽  
...  

Innovations in high-resolution optical imaging have allowed visualization of nanoscale biological structures and connections. However, super-resolution fluorescence techniques, including both optics-oriented and sample-expansion based, are limited in quantification and throughput especially in tissues from photobleaching or quenching of the fluorophores, and low-efficiency or non-uniform delivery of the probes. Here, we report a general sample-expansion vibrational imaging strategy, termed VISTA, for scalable label-free high-resolution interrogations of protein-rich biological structures with resolution down to 82 nm. VISTA achieves decent three-dimensional image quality through optimal retention of endogenous proteins, isotropic sample expansion, and deprivation of scattering lipids. Free from probe-labeling associated issues, VISTA offers unbiased and high-throughput tissue investigations. With correlative VISTA and immunofluorescence, we further validated the imaging specificity of VISTA and trained an image-segmentation model for label-free multi-component and volumetric prediction of nucleus, blood vessels, neuronal cells and dendrites in complex mouse brain tissues. VISTA could hence open new avenues for versatile biomedical studies.


Sexual Health ◽  
2013 ◽  
Vol 10 (6) ◽  
pp. 581
Author(s):  
Jenny McCloskey ◽  
Janelle Hall ◽  
Michael Phillips ◽  
Cecily Metcalf

Background Treatments for anal intraepithelial neoplasia (AIN) are still being established. Methods: An audit of patients referred for treatment of anal disease by CO2 laser at a Perth SHS was performed. Patient demographics including sex, sexual preference, age, and HIV status were documented. Anal cytology, histopathology, and HPV testing before and after treatment were reviewed in this preliminary analysis. Initial diagnosis of anal disease including AIN was made by high-resolution anoscopy (HRA) and by histological examination. Patients were then referred for treatment. Six-monthly HRA review occurred after treatment and the original site of HGAIN was biopsied. Results: Preliminary analysis of 28 patients included 16 patients with AIN 2 and 12 with AIN 3. After laser treatment, 7 patients had no AIN, 3 had AIN 1, 10 had AIN 2 and 4 had AIN 3, indicating successful reduction in AIN status (Pearson χ2 = 15.2, P = 0.002). The incidence of AIN decreased over the 18 months of follow-up. Conclusions: Studies of CO2 laser ablation of the anal canal are ongoing and need further study. Table 1. High-resolution anoscopy follow up Rx, treatment


Sign in / Sign up

Export Citation Format

Share Document