scholarly journals Seasonal Variability of Wind Stress Curl and Vorticity of Surface Currents in the North Atlantic

Author(s):  
A.B. Polonskii ◽  
I.G. Shokurova ◽  
P.A. Sukhonos ◽  
◽  
◽  
...  
2010 ◽  
Vol 67 (5) ◽  
pp. 1687-1694 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa

Abstract Adopting a rotated empirical orthogonal function (REOF) analysis and a maximum covariance analysis (MCA), characteristics of the wintertime wind stress curl (WSC) anomaly field in the North Atlantic are investigated. In terms of both temporal variation and spatial distribution, the first four leading modes of WSC show a one-to-one relation with four atmospheric teleconnection patterns over the North Atlantic sector: the North Atlantic Oscillation (NAO) and the east Atlantic (EA), tropical–Northern Hemisphere (TNH), and Pacific–North American (PNA) patterns. These four patterns characterize the WSC variations over the different regions in the North Atlantic: NAO and EA over the eastern side of the basin, TNH over the central part of the basin, and PNA over the western side of the basin.


2006 ◽  
Vol 36 (3) ◽  
pp. 316-334 ◽  
Author(s):  
Kettyah C. Chhak ◽  
Andrew M. Moore ◽  
Ralph F. Milliff ◽  
Grant Branstator ◽  
William R. Holland ◽  
...  

Abstract As discussed in Part I of this study, the magnitude of the stochastic component of wind stress forcing is comparable to that of the seasonal cycle and thus will likely have a significant influence on the ocean circulation. By forcing a quasigeostrophic model of the North Atlantic Ocean circulation with stochastic wind stress curl data from the NCAR CCM3, it was found in Part I that much of the stochastically induced variability in the ocean circulation is confined to the western boundary region and some major topographic features even though the stochastic forcing is basinwide. This can be attributed to effects of bathymetry and vorticity gradients in the basic state on the system eigenmodes. Using generalized stability theory (GST), it was found in Part I that transient growth due to the linear interference of nonnormal eigenmodes enhances the stochastically induced variance. In the present study, the GST analysis of Part I is extended and it is found that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically induced perturbations, and it is this process that maintains the variance of the stochastically induced circulations. Analysis of the large-scale circulation also reveals that the system possesses a large number of degrees of freedom, which has significant implications for ocean prediction. Sensitivity studies show that the results and conclusions of this study are insensitive and robust to variations in model parameters and model configuration.


2021 ◽  
Author(s):  
Paridhi Rustogi ◽  
Peter Landschuetzer ◽  
Sebastian Brune ◽  
Johanna Baehr

<p>Understanding the variability and drivers of air-sea CO<span><sub>2</sub></span> fluxes on seasonal timescales is critical for resolving the ocean carbon sink's evolution and variability. Here, we investigate whether discrepancies in the representation of air-sea CO<span><sub>2</sub></span> fluxes on a seasonal timescale accumulate to influence the representation of CO<span><sub>2</sub></span> fluxes on an interannual timescale in two important ocean CO<span><sub>2 </sub></span>sink regions – the North Atlantic basin and the Southern Ocean. Using an observation-based product (SOM-FFN) as a reference, we investigate the representation of air-sea CO<span><sub>2</sub></span> fluxes in the Max Planck Institute's Earth System Model Grand Ensemble (MPI-ESM GE). Additionally, we include a simulation based on the same model configuration, where observational data from the atmosphere and ocean components is assimilated (EnKF assimilation) to verify if the inclusion of observational data alters the model state significantly and if the updated modelled CO<span><sub>2 </sub></span>flux values better represent observations.</p><p>We find agreement between all three observation-based and model products on an interannual timescale for the North Atlantic basin. However, the agreement on a seasonal timescale is inconsistent with discrepancies as large as 0.26 PgC/yr in boreal autumn in the North Atlantic. In the Southern Ocean, we find little agreement between the three products on an interannual basis with significant seasonal discrepancies as large as 1.71 PgC/yr in austral winter. However, while we identify regional patterns of dominating seasonal variability in MPI-GE and EnKF, we find that the SOM-FFN cannot demonstrate robust conclusions on the relevance of seasonal variability in the Southern Ocean. In turn, we cannot pin down the problems for this region.</p>


Oceanologia ◽  
2019 ◽  
Vol 61 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Iwona Wróbel-Niedźwiecka ◽  
Violetta Drozdowska ◽  
Jacek Piskozub

Sign in / Sign up

Export Citation Format

Share Document