scholarly journals Analysis of Principal Components of the Sea Ice Concentration Fields in the Barents Sea

Author(s):  
N.V. Mikhailova ◽  
A.V. Yurovsky ◽  
◽  
2016 ◽  
Vol 29 (12) ◽  
pp. 4473-4485 ◽  
Author(s):  
Cian Woods ◽  
Rodrigo Caballero

Abstract This paper examines the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration. It is found that the vertical structure of the warming associated with moist intrusions is bottom amplified, corresponding to a transition of local conditions from a “cold clear” state with a strong inversion to a “warm opaque” state with a weaker inversion. In the marginal sea ice zone of the Barents Sea, the passage of an intrusion also causes a retreat of the ice margin, which persists for many days after the intrusion has passed. The authors find that there is a positive trend in the number of intrusion events crossing 70°N during December and January that can explain roughly 45% of the surface air temperature and 30% of the sea ice concentration trends observed in the Barents Sea during the past two decades.


2021 ◽  
Author(s):  
Bayoumy Mohamed ◽  
Frank Nilsen ◽  
Ragnheid Skogseth

<p>Sea ice loss in the Arctic region is an important indicator for climate change. Especially in the Barents Sea, which is expected to be free of ice by the mid of this century (Onarheim et al., 2018). Here, we analyze 38 years (1982-2019) of daily gridded sea surface temperature (SST) and sea ice concentration (SIC) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) project. These data sets have been used to investigate the seasonal cycle and linear trends of SST and SIC, and their spatial distribution in the Barents Sea. From the SST seasonal cycle analysis, we have found that most of the years that have temperatures above the climatic mean (1982-2019) were recorded after 2000. This confirms the warm transition that has taken place in the Barents Sea over the last two decades. The year 2016 was the warmest year in both winter and summer during the study period.   </p><p>Results from the linear trend analysis reveal an overall statistically significant warming trend for the whole Barents Sea of about 0.33±0.03 °C/decade, associated with a sea ice reduction rate of about -4.9±0.6 %/decade. However, the SST trend show a high spatial variability over the Barents Sea. The highest SST trend was found over the eastern part of the Barents Sea and south of Svalbard (Storfjordrenna Trough), while the Northern Barents Sea shows less distinct and non-significant trends. The largest negative trend of sea ice was observed between Novaya Zemlya and Franz Josef Land. Over the last two decades (2000-2019), the data show an amplified warming trend in the Barents Sea where the SST warming trend has increased dramatically (0.46±0.09 °C/decade) and the SIC is here decreasing with rate of about -6.4±1.5 %/decade.  Considering the current development of SST, if this trend persists, the Barents Sea annual mean SST will rise by around 1.4 °C by the end of 2050, which will have a drastic impact on the loss of sea ice in the Barents Sea.   </p><p> </p><p>Keywords: Sea surface temperature; Sea ice concentration; Trend analysis; Barents Sea</p>


2016 ◽  
Vol 10 (5) ◽  
pp. 2027-2041 ◽  
Author(s):  
Harry L. Stern ◽  
Kristin L. Laidre

Abstract. Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.


2016 ◽  
Author(s):  
Harry L. Stern ◽  
Kristin L. Laidre

Abstract. Abstract. Nineteen distinct subpopulations of polar bears (Ursus maritimus) are found throughout the Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is tied to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum, or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring, and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days), and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of change in marine mammal habitat) were designed to be useful for management agencies. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.


2020 ◽  
Vol 77 (5) ◽  
pp. 1796-1805
Author(s):  
Nicolas Dupont ◽  
Joël M Durant ◽  
Øystein Langangen ◽  
Harald Gjøsæter ◽  
Leif Christian Stige

Abstract Oceanographic conditions in the Arctic are changing, with sea ice cover decreasing and sea temperatures increasing. Our understanding of the effects on marine populations in the area is, however, limited. Here, we focus on the Barents Sea stock of polar cod (Boreogadus saida). Polar cod is a key fish species for the transfer of energy from zooplankton to higher trophic levels in the Arctic food web. We analyse the relationships between 30-year data series on the length-at-age of polar cod cohorts (ages 0–4) and sea surface temperature, sea ice concentration, prey biomasses, predator indices, and length-at-age the previous year using multiple linear regression. Results for several ages showed that high length-at-age is significantly associated with low sea ice concentration and high length-at-age the previous year. Only length-at-age for age 1 shows a positive significant relationship with prey biomass. Our results suggest that retreating sea ice has positive effects on the growth of polar cod in the Barents Sea despite previous observations of a stagnating stock biomass and decreasing stock abundance. Our results contribute to identifying mechanisms by which climate variability affects the polar cod population, with implications for our understanding of how future climate change may affect Arctic ecosystems.


2013 ◽  
Vol 9 (6) ◽  
pp. 6515-6549 ◽  
Author(s):  
F. Klein ◽  
H. Goosse ◽  
A. Mairesse ◽  
A. de Vernal

Abstract. The consistency between a new quantitative reconstruction of Arctic sea-ice concentration based on dinocyst assemblages and the results of climate models has been investigated for the mid-Holocene. The comparison shows that the simulated sea-ice changes are weaker and spatially more homogeneous than the recorded ones. Furthermore, although the model-data agreement is relatively good in some regions such as the Labrador Sea, the skill of the models at local scale is low. The response of the models follows mainly the increase in summer insolation at large scale. This is modulated by changes in atmospheric circulation leading to differences between regions in the models that are albeit smaller than in the reconstruction. Performing simulations with data assimilation using the model LOVECLIM amplifies those regional differences, mainly through a reduction of the southward winds in the Barents Sea and an increase in the westerly winds in the Canadian Basin of the Arctic. This leads to an increase in the ice concentration in the Barents and Chukchi Seas and a better agreement with the reconstructions. This underlines the potential role of atmospheric circulation to explain the reconstructed changes during the Holocene.


2014 ◽  
Vol 27 (7) ◽  
pp. 2533-2544 ◽  
Author(s):  
Jessica Liptak ◽  
Courtenay Strong

Abstract The feedback between Barents Sea ice and the winter atmosphere was studied in a modeling framework by decomposing it into two sequential boundary forcing experiments. The Community Ice Code (CICE) model was initialized with anomalously high sea ice concentration (SIC) over the Barents Sea and forced with an atmosphere produced by positive SIC anomalies, and CICE was initialized with low Barents Sea SIC and forced with an atmosphere produced by negative SIC anomalies. Corresponding control runs were produced by exposing the same SIC initial conditions to climatological atmospheres, and the monthly mean sea ice response showed a positive feedback over the Barents Sea for both experiments: the atmosphere produced by positive SIC anomalies increased SIC over the Barents Sea during the winter, and the atmosphere produced by negative SIC anomalies decreased SIC. These positive feedbacks were driven primarily by thermodynamic forcing from surface longwave flux anomalies and were weakened somewhat by atmospheric temperature advection. Dynamical effects also opposed the positive feedback, with enhanced surface wind stress divergence over the Barents Sea in the high-SIC case and enhanced convergence in the low-SIC case.


Sign in / Sign up

Export Citation Format

Share Document