Problems in Welding of High Strength Aluminium Alloys

1994 ◽  
Vol 27 (4) ◽  
pp. 26
Author(s):  
S. M. Vaidya
Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2009 ◽  
Vol 65 ◽  
pp. 53-61 ◽  
Author(s):  
J. Solis ◽  
J. Oseguera-Peña ◽  
I. Betancourt

The Navarro-Rios micromechanical model was used to assess the bounds of two different damage zones: crack arrest region and crack propagation region of controlled shot peening (CSP) of high strength aluminium alloys. Performance of CSP in terms of fatigue resistance was investigated. This comparison indicated that CSP in terms of fatigue depends on the competition between its beneficial and detrimental products, i.e. surface roughness and compressive residual stresses respectively. The gathered information can be used for safe load determinations in design.


2020 ◽  
Vol 117 (4) ◽  
pp. 405 ◽  
Author(s):  
G. Kasirajan ◽  
Sathish Rengarajan ◽  
R. Ashok kumar ◽  
G.R. Raghav ◽  
V.S. Rao ◽  
...  

To improve the performance and effectiveness of cost, constructing lightweight structure is the important factor for automobile, naval and aerospace industries. AA5052 and AA6101-T6 aluminium alloys are widely applied in transport industries, due to their lightweight and high strength and hence, joining of these two are unavoidable. Friction stir welding is an unconventional welding method, which is developed for constructing lightweight structures. This work describes the detailed study of friction stir welded dissimilar AA5052 and AA6101-T6 alloys. AA5052 and AA6101-T6 plates are welded with rotation rates of 765–1400 rpm and offset distances at advancing side of 0–2 mm. For this purpose, four levels of welding parameters based on Taguchi L16 orthogonal array are chosen. To determine the optimum combinational levels and identify the effect of above-mentioned parameters on tensile and wear properties, Signal to Noise ratio and ANOVA respectively are used. From the results, it is observed that the combination of 1 mm offset distance at advancing side and 1400 rpm rotating speed produces better tensile and wear properties, which is due to high heat generation, sufficient flow of materials and balanced precipitation and strain hardening effects. On the other hand, the combination of 2 mm tool offset at advancing side and 765 rpm rotational rate exhibits poor properties, which is associated with low heat input, defects formation, precipitate coarsening and lesser strain hardening effects.


Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 155-168
Author(s):  
Justine Decrozant-Triquenaux ◽  
Leonardo Pelcastre ◽  
Braham Prakash ◽  
Jens Hardell

Abstract The use of high strength aluminium alloys, such as 6XXX and 7XXX series, is continuously increasing for automotive applications in view of their good strength-to-weight ratio. Their formability at room temperature is limited and they are thus often formed at high temperatures to enable production of complex geometries. Critical challenges during hot forming of aluminium are the occurrence of severe adhesion and material transfer onto the forming tools. This negatively affects the tool life and the quality of the produced parts. In general, the main mechanisms involved in the occurrence of material transfer of aluminium alloys at high temperature are still not clearly understood. Therefore, this study is focussed on understanding of the friction and wear behaviour during interaction of Al6016 alloy and three different tool steels in as-received and polished state. The tribotests were carried out under dry and lubricated conditions, with two distinct lubricants, using a reciprocating friction and wear tester. The worn surfaces were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed a high dependence of friction and wear behaviour on the tool steel roughness as well as on the stability of the lubricant films. Tribolayers were found to develop in the contact zone and their capacity to improve the tribological behaviour is seen to be drastically impacted by the surface roughness of the tool steel. When the tribolayers failed, severe adhesion took place and led to high and unstable friction as well as material transfer to the tool steel.


Sign in / Sign up

Export Citation Format

Share Document