Selection of Appropriate Process Parameters for Gas Metal Arc Welding of a Steel under 100% Carbon Dioxide Gas Shield

2016 ◽  
Vol 49 (4) ◽  
pp. 79
Author(s):  
Arunava Sarkar ◽  
Santanu Das
Author(s):  
R. Venkata Rao

Weld quality is greatly affected by the operating process parameters in the gas metal arc welding (GMAW) process. The quality of the welded material can be evaluated by many characteristics, such as bead geometric parameters, deposition efficiency, weld strength, weld distortion, et cetera. These characteristics are controlled by a number of welding process parameters, and it is important to set up proper process parameters to attain good quality. Various optimization methods can be applied to define the desired process output parameters through developing mathematical models to specify the relationship between the input parameters and output parameters. The method capable of accurate prediction of welding process output parameters would be valuable for rapid development of welding procedures and for developing control algorithms in automated welding applications. This chapter presents the details of various techniques used for modeling and optimization of GMAW process parameters. The optimization methods covered in this chapter are appropriate for modeling and optimizing the GMAW process. It is found that there is high level of interest in the adaptation of RSM and ANN techniques to predict responses and to optimize the GMAW process. Combining two optimization techniques, such as GA and RSM, would reveal good results for finding out the optimal welding conditions. Furthermore, efforts are required to apply advanced optimization techniques to find out the optimal parameters for GMAW process at which the process could be considered safe and more economical.


2015 ◽  
Vol 1766 ◽  
pp. 53-62 ◽  
Author(s):  
Luis A. López ◽  
Gladys Y. Perez ◽  
Felipe J. Garcia ◽  
Víctor H. López

ABSTRACTThis paper focuses on the impact of process parameters of gas metal arc welding (GMAW) on the mechanisms of fail and wear present in the contact tips (CT), component located in the welding gun, when high strength low alloy (HSLA) steel is welded with ER70S - 0.045” copper coated electrode in manual mode. By means of chemical analysis the alloy was identified as C12200. It was also identified that the maximum temperature reached by the CT is 850° C. 30 samples were obtained that had different lifetime, which were analyzed by stereoscope and its behavior against wear was determined by using an equation of relative wear. Microstructural changes as recrystallization and grain growth undergone by these CT were also evidenced by light microscopy. In addition the changes in their mechanical properties such as decrease in their hardness to about of half that initially had. Finally some significant samples were analyzed by scanning electron microscopy (SEM); microanalysis was used to identify the exchange of matter leaving from the electrode in the CT and spatter into the hole of the component.


Sign in / Sign up

Export Citation Format

Share Document