scholarly journals Transient Thermal Resistance of Borehole Heat Exchangers for Hourly Simulations of Geothermal Heat Pumps Systems

Author(s):  
Antonella Priarone ◽  
Marco Fossa
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3461 ◽  
Author(s):  
Fabio Minchio ◽  
Gabriele Cesari ◽  
Claudio Pastore ◽  
Marco Fossa

The correct design of a system of borehole heat exchangers (BHEs) is the primary requirement for attaining high performance with geothermal heat pumps. The design procedure is based on a reliable estimate of ground thermal properties, which can be assessed by a Thermal Response Test (TRT). The TRT analysis is usually performed adopting the Infinite Line Source model and is based on a series of assumptions to which the experiment must comply, including stable initial ground temperatures and a constant heat transfer rate during the experiment. The present paper novelty is related to depth distributed temperature measurements in a series of TRT experiments. The approach is based on the use of special submersible sensors able to record their position inside the pipes. The focus is on the early period of BHE installation, when the grout cement filling the BHE is still chemically reacting, thus releasing extra heat. The comprehensive dataset presented here shows how grout hydration can affect the depth profile of the undisturbed ground temperature and how the temperature evolution in time and space can be used for assessing the correct recovery period for starting the TRT experiment and inferring information on grouting defects along the BHE depth.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7407
Author(s):  
Marco Belliardi ◽  
Nerio Cereghetti ◽  
Paola Caputo ◽  
Simone Ferrari

Geothermal heat is an increasingly adopted source for satisfying all thermal purposes in buildings by reversible heat pumps (HP). However, for residential buildings located in moderate climates, geocooling, that implies the use of geothermal source for cooling buildings without the operation of HP, is an efficient alternative for space cooling not yet explored enough. Geocooling allows two main benefits: to cool the buildings by high energy efficiencies improving summer comfort; to recharge the ground if space heating is provided by HP exploiting the geothermal source (GSHP). In these cases, geocooling allows to avoid the decreasing of the performances of the GSHP for space heating over the years. To explore these issues, a method has been developed and tested on a real case: a new residential building in Lugano (southern Switzerland) coupled with 13 borehole heat exchangers. The system provides space heating in winter by a GSHP and space cooling in summer by geocooling. During a 40 months monitoring campaign, data such as temperatures, heat flows and electricity consumptions were recorded to calibrate the model and verify the benefits of such configuration. Focusing on summer operation, the efficiency of the system, after the improvements implemented, is above 30, confirming, at least in similar contexts, the feasibility of geocooling. Achieved results provides knowledge for future installations, underlining the replication potential and the possible limits.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5119
Author(s):  
Tomasz Sliwa ◽  
Tomasz Kowalski ◽  
Dominik Cekus ◽  
Aneta Sapińska-Śliwa

Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.


2020 ◽  
Vol 154 ◽  
pp. 04003
Author(s):  
Elżbieta Hałaj

Heat pumps become more and more popular heat source. They can be an alternative choice for obsolete coal fired boilers which are emissive and not ecological. During heat pump installation designing process, especially for heat pumps with higher heating capacity (for example those suppling larger buildings), a simulation of heat balance of ground heat source must be provided. A 3D heat transport model and groundwater flow in the geothermal heat source for heat pump (GSHP) installation was developed in FEFLOW according to Finite Element Modelling Method. The model consists of 25 borehole heat exchangers, arranged with spacing recommended by heat pump branch guidelines. The model consists of both a homogeneous, non-layered domain and a layered domain, which reflected differences in thermal properties of the ground and hydrogeological factors. The initial temperature distribution in the ground was simulating according to conditions typical for Europe in steady state heat flow. Optimal mesh refinement for nodes around borehole heat exchangers were calculated according to Nillert method. The aim of this work is to present influence of geological, hydrogeological factors and borehole arrangement in the energy balance and long term sustainability of the ground source. The thermal changes in the subsurface have been determined for a long term operation (30 years of operation period). Some thermal energy storage applications have also been considered.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 754 ◽  
Author(s):  
Jiewen Deng ◽  
Qingpeng Wei ◽  
Shi He ◽  
Mei Liang ◽  
Hui Zhang

Deep borehole heat exchangers (DBHEs) extract heat from the medium-depth geothermal energy with the depth of 2–3 km and provide high-temperature heat source for the medium-depth geothermal heat pump systems (MD-GHPs). This paper focuses on the heat transfer performance of DBHEs, where field tests and simulation are conducted to analyze the heat transfer process and the influence factors. Results identify that the heat transfer performance is greatly influenced by geothermal properties of the ground, thermal properties and depth of DBHEs and operation parameters, which could be classified into external factors, internal factors and synergic adjustment. In addition, the long-term operation effects are analyzed with the simulation, results show that with inlet water temperature setting at 20 °C and flow rate setting at 6.0 kg/s, the average outlet water temperature only drops 0.99 °C and the average heat extraction drops 9.5% after 20-years operation. Therefore, it demonstrates that the medium-depth geothermal energy can serve as the high-temperature heat source for heat pump systems stably and reliably. The results from this study can be potentially used to guide the system design and optimization of DBHEs.


Sign in / Sign up

Export Citation Format

Share Document