scholarly journals Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue

Author(s):  
Long Cheng ◽  
Shuofeng Zhang ◽  
Fei Shang ◽  
Jianning Sun ◽  
Shifen Dong
2017 ◽  
Vol 263 ◽  
pp. e71
Author(s):  
Jaroslava Trnovská ◽  
Michal Pravenec ◽  
Jan Silhavy ◽  
Hynek Strnad ◽  
Sebastian Eigner ◽  
...  

1982 ◽  
Vol 60 (9) ◽  
pp. 910-916 ◽  
Author(s):  
Nicole Bégin-Heick ◽  
H. M. C. Heick

The activation of brown adipose tissue adenylate cyclase by catecholamines was studied in genetically obese (ob/ob) and lean mice. In obese mice, the maximum activation of the enzyme by several β-adrenergic agonists was only two-thirds that in lean mice and, as an activator, noradrenaline was only one-eighth as potent. The adenylate cyclase was also less responsive to guanine nucleotides. In these respects, the defect in catecholamine-stimulated adenylate cyclase was similar in both white and brown adipose tissue of the obese mouse. The enzyme in brown adipose tissue differed from that in white adipose tissue in its sensitivity to other β-adrenergic agonists and in its requirement for Mg2+. It is suggested that this abnormal catecholamine-activated adenylate cyclase in brown adipose tissue may be related to the thermoregulatory defect of the obese mouse and hence may contribute to the obesity syndrome.


1989 ◽  
Vol 259 (3) ◽  
pp. 651-657 ◽  
Author(s):  
G J Cooney ◽  
M A Vanner ◽  
J L Nicks ◽  
P F Williams ◽  
I D Caterson

Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values. In WAT, lipogenesis after feeding was highest 2-4 weeks after GTG injection, and in liver, lipid synthesis in fed obese mice was greatest at 7-12 weeks after the induction of obesity. The post-prandial insulin concentration was increased after 2 weeks of obesity, and serum glucose concentration was higher in fed obese mice after 4 weeks. These results indicate that increased lipogenesis in GTG-injected mice may be due to an increase in insulin concentration after feeding and that insulin resistance (assessed by lipogenic response to insulin release) is apparent in BAT before WAT and liver.


2018 ◽  
Vol 11 ◽  
pp. 59-69 ◽  
Author(s):  
Abhishek K. Singh ◽  
Binod Aryal ◽  
Balkrishna Chaube ◽  
Noemi Rotllan ◽  
Luis Varela ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Long Cheng ◽  
Shuofeng Zhang ◽  
Fei Shang ◽  
Yibo Ning ◽  
Zhiqi Huang ◽  
...  

BackgroundAdipose tissue (e.g. white, brown and brite) plays a critical role in modulating energy metabolism. Activating brown adipose tissue (BAT) and inducing browning in white adipose tissue (WAT) has been proposed to be a potential molecular target for obesity treatment. Emodin is a natural anthraquinone derivative that exhibits variety of pharmacologic effects including lowering lipids and regulating glucose utilization. However, the underlying mechanism of action is still unclear. In the present study, we investigated whether emodin could alleviate obesity via promoting browning process in adipose tissue.MethodsC57BL/6J mice were fed with high fat diet to induce obesity. Emodin at the doses of 40 and 80 mg/kg were orally given to obesity mice for consecutive 6 weeks. Parameters including fasting blood glucose, oral glucose tolerance, blood lipids, and the ratios of subcutaneous white adipose tissue (scWAT) or BAT mass to body weight, and morphology of adipose tissue were observed. Besides, the protein expression of uncoupling protein 1 (UCP1) and prohibitin in BAT and scWAT was determined by immunohistochemistry method. Relative mRNA expression of Cd137, transmembrane protein 26 (Tmem26) and Tbx1 in scWAT was analyzed using qRT-PCR. And the protein expression of UCP1, CD36, fatty acid transporter 4 (FATP4), peroxisome proliferator-activated receptor alpha (PPARα) and prohibitin of scWAT and BAT were analyzed using western blotting. In addition, ultra-high-performance liquid chromatography with electrospray ionization tandem mass spectrometry was utilized to detect the small lipid metabolites of scWAT and BAT.ResultsEmodin decreased the body weight and food intake in HFD-induced obesity mice, and it also improved the glucose tolerance and reduced the blood lipids. Emodin treatment induced beiging of WAT, and more multilocular lipid droplets were found in scWAT. Also, emodin significantly increased markers of beige adipocytes, e.g. Cd137, Tmem26 and Tbx1 mRNA in scWAT, and UCP1, CD36, FATP4, PPARα and prohibitin protein expression in scWAT and BAT. Furthermore, emodin perturbed the lipidomic profiles in scWAT and BAT of obese mice. Emodin increased total ceramides (Cers), lysophosphatidylcholines (LPCs), lyso-phosphatidylcholines oxygen (LPCs-O), and phosphatidylethanolamines oxygen (PEs-O) species concentration in scWAT. Specifically, emodin significantly up-regulated levels of Cer (34:1), LPC (18:2), LPC-(O-20:2), PC (O-40:7), PE (O-36:3), PE (O-38:6), PE (O-40:6), and sphingolipid (41:0) [SM (41:0)], and down-regulated PC (O-38:0), PE (O-40:4), PE (O-40:5) in scWAT of obesity mice. In terms of lipid matabolites of BAT, the emodin remarkably increased the total PCs levels, which was driven by significant increase of PC (30:0), PC (32:1), PC (32:2), PC (33:4) and PC (38:0) species. In addition, it also increased species of LPCs, e.g. LPC (20:0), LPC (20:1), LPC (22:0), LPC (22:1), LPC (24:0), and LPC (24:1). Especially, emodin treatment could reverse the ratio of PC/PE in HFD-induced obese mice.ConclusionsThese results indicated that emodin could ameliorate adiposity and improve metabolic disorders in obese mice. Also, emodin could promote browning in scWAT and activate the BAT activities. In addition, emodin treatment-induced changes to the scWAT and BAT lipidome were highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflects selective remodeling in scWAT and BAT of both glycerophospholipids and sphingolipids in response to emodin treatment.


2020 ◽  
Author(s):  
G Lenihan-Geels ◽  
F Garcia-Carrizo ◽  
C Li ◽  
M Oster ◽  
A Prokesch ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-754 ◽  
Author(s):  
Nicholas Stylopoulos ◽  
Xiao B. Zhang ◽  
Anna-Liisa Brownell ◽  
Lee M. Kaplan

Sign in / Sign up

Export Citation Format

Share Document