maximum activation
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 5 (S2) ◽  
pp. 1346-1354
Author(s):  
Gavkhar Nazarkulovna Pirmanova ◽  
Musallam Akhmadovna Safarova ◽  
Zilola Farmonovna Khalilova ◽  
Nargiza Samartdinovna Tashpulatova ◽  
Nodira Suyundikovna Normatova

The article about the intellectual and creative activity of teenagers is especially productive if it is devoted to the knowledge of artistic values. Here, intelligence and creativity are activated. Moreover, in adolescence, there is a lively interest in art and a great need for its knowledge at the logical-cognitive and artistic-aesthetic levels. In dealing with highly artistic works (in preparing teenagers for their perception and the process itself) logical and artistic thinking develops, with the maximum activation of creative thinking and imagination, generalization, and one's attitude, as well as reproduction. However, this is not enough for teenagers: intellectual and creative potential requires its implementation in any activity of cognition. It is in this process of intellectual and creative development with the result of activities (for example, cognitive and educational) that the personality of adolescents is formed.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6774
Author(s):  
Doyoung Kim ◽  
Inwoong Lee ◽  
Dohyung Kim ◽  
Sanghoon Lee

The development of action recognition models has shown great performance on various video datasets. Nevertheless, because there is no rich data on target actions in existing datasets, it is insufficient to perform action recognition applications required by industries. To satisfy this requirement, datasets composed of target actions with high availability have been created, but it is difficult to capture various characteristics in actual environments because video data are generated in a specific environment. In this paper, we introduce a new ETRI-Activity3D-LivingLab dataset, which provides action sequences in actual environments and helps to handle a network generalization issue due to the dataset shift. When the action recognition model is trained on the ETRI-Activity3D and KIST SynADL datasets and evaluated on the ETRI-Activity3D-LivingLab dataset, the performance can be severely degraded because the datasets were captured in different environments domains. To reduce this dataset shift between training and testing datasets, we propose a close-up of maximum activation, which magnifies the most activated part of a video input in detail. In addition, we present various experimental results and analysis that show the dataset shift and demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 103 (3) ◽  
pp. 53-59
Author(s):  
T.K. Jumadilov ◽  
◽  
Z.B. Malimbayeva ◽  
Kh. Khimersen ◽  
I.S. Saparbekova ◽  
...  

Some technological solutions contain valuable components and can become an additional source of rare-earth elements to satisfy the current production demands. This research provides the study on using a combination of polyacrylic acid hydrogel (hPAA) and hydrogel of poly-4-vinylpyridine (hP4VP) in different molar ratios for praseodymium ions sorption from its nitrate solution. The mutual activation of the hydrogels in an aqueous medium provides their transformation into a highly ionized state by the conformational and electrochemical changes in properties during their remote interaction. The electrochemical properties of solutions were studied by the methods of electrical conductivity, and pH measurements of the solutions. The research showed that the maximum activation of hydrogels was revealed within the molar ratio of hPAA:hP4VP equal to 1:5. Moreover, the total praseodymium ions sorption degree after 24 hours of sorption by individual hPAA and hP4VP was 54 % and 47 %, respectively, whereas the praseodymium ions sorption degree by the hPAA–hP4VP intergel system in the molar ratio 1:5 became 62 %. A slight increase in the sorption degree of praseodymium ions by the intergel system in comparison with individual hydrogels can be explained by the achievement of a higher ionization degree of hydrogels being activated in the hPAA–hP4VP interpolymer system by the remote interaction effect.


2021 ◽  
Author(s):  
Satheeshkumar S. ◽  
Sathishkumar T. P ◽  
Rajini Nagarajan ◽  
Navaneethakrishnan P. ◽  
Sikiru O. Ismail ◽  
...  

Abstract The present work investigates the mechanical strengths retention and prediction of maximum service life of sets of laminated composites by analyzing their diffusion coefficients and activation energies, using Fick’s law and Arrhenius principle. Jute fiber woven mat reinforced epoxy laminated composites (JFMRLCs) were prepared by simple hand lay-up and compression molding methods. The layering patterns of 0º balanced laminate of [0º/0º/0º/0º/0º], 30º angle-ply laminate of [0º/+30º/0º/-30º/0º] and 45° angle-ply laminate of [0°/+45°/0°/-45°/0°] were used to prepare the composite samples, according to classical laminated plate theory (CLPT). The composites were immersed in water at different periods of 10, 20, 30 and 40 days aging. The effects of the various periods of aging on their mechanical properties were studied. The results showed that the weights of the composite samples increased by increasing the aging periods. The mechanical properties of aged (wet) composites were compared with the unaged (dry) counterparts to predict their strengths retention. The composite with 45° layering pattern exhibited the maximum strength retention. Also, the same composite sample with layering pattern of 45° produced the maximum activation energy, based on Arrhenius principle. The tensile fractured surfaces were analyzed to investigate into their fiber-matrix interfacial bonds through images obtained from scanning electron microscopy (SEM). Summarily, it was evident that optimum JFMRLCs with layering pattern of 45° exhibited best mechanical properties. Hence, they can act as suitable, sustainable, low cost and environmentally friendly composite materials for structural marine and other related engineering applications.


2021 ◽  
Vol 78 ◽  
pp. 102828
Author(s):  
Rachel Malcolm ◽  
Simon Cooper ◽  
Jonathan Folland ◽  
Christopher Tyler ◽  
Ricci Hannah ◽  
...  

Author(s):  
Kotaro Nagatsu ◽  
Hisashi Suzuki ◽  
Masami Fukada ◽  
Taku Ito ◽  
Jun Ichinose ◽  
...  

Abstract Purpose We demonstrate cyclotron production of high-quality 225Ac using an electroplated 226Ra target. Methods 226Ra was extracted from legacy Ra sources using a chelating resin. Subsequent ion-exchange purification gave pure 226Ra with a certain amount of carrier Ba. The radium target was prepared by electroplating. We successfully deposited about 37 MBq of 226Ra on a target box. Maximum activation was achieved using 15.6 MeV protons on the target at 20 µA for 5 h. Two functional resins with various concentrations of nitric acid purified 225Ac and recovered 226Ra. Cooling the intermediate 225Ac for 2–3 weeks decayed the major byproduct of 226Ac and increased the radionuclidic purity of 225Ac. Repeating the same separation protocol provided high-quality 225Ac. Results We obtained 225Ac at a yield of about 2.4 MBq at the end of bombardment (EOB), and the subsequent initial purification gave 1.7 MBq of 225Ac with 226Ac/225Ac ratio of < 3% at 4 days from EOB. Additional cooling time coupled with the separation procedure (secondary purification) effectively increased the 225Ac (4n + 1 series) radionuclidic purity up to 99 + %. The recovered 225Ac had a similar identification to commercially available 225Ac originating from a 229Th/225Ac generator. Conclusion This procedure, which involves the 226Ra(p,2n)225Ac reaction and the appropriate purification, has the potential to be a major alternative pathway for 225Ac production because it can be performed in any facility with a compact cyclotron to address the increasing demand for 225Ac.


2021 ◽  
Vol 195 ◽  
pp. 86-96
Author(s):  
Lucas Keiler ◽  
Carlos V.G.C. Lima ◽  
Ana Karolinna Maia ◽  
Rudini Sampaio ◽  
Ignasi Sau

2020 ◽  
Vol 477 (22) ◽  
pp. 4383-4395
Author(s):  
Eleni Makraki ◽  
John F. Darby ◽  
Marta G. Carneiro ◽  
James D. Firth ◽  
Alex Heyam ◽  
...  

A fragment screen of a library of 560 commercially available fragments using a kinetic assay identified a small molecule that increased the activity of the fungal glycoside hydrolase TrBgl2. An analogue by catalogue approach and detailed kinetic analysis identified improved compounds that behaved as nonessential activators with up to a 2-fold increase in maximum activation. The compounds did not activate the related bacterial glycoside hydrolase CcBglA demonstrating specificity. Interestingly, an analogue of the initial fragment inhibits both TrBgl2 and CcBglA, apparently through a mixed-model mechanism. Although it was not possible to determine crystal structures of activator binding to 55 kDa TrBgl2, solution NMR experiments demonstrated a specific binding site for the activator. A partial assignment of the NMR spectrum gave the identity of the amino acids at this site, allowing a model for TrBgl2 activation to be built. The activator binds at the entrance of the substrate-binding site, generating a productive conformation for the enzyme–substrate complex.


2020 ◽  
Vol 48 (21) ◽  
pp. 12282-12296
Author(s):  
Jeannette Kappenberger ◽  
Wolfgang Koelmel ◽  
Elisabeth Schoenwetter ◽  
Tobias Scheuer ◽  
Julia Woerner ◽  
...  

Abstract The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB’s ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB’s ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.


Sign in / Sign up

Export Citation Format

Share Document