scholarly journals A Constitutive Stress Response is an Adaptation to Low Temperature in the Antarctic green alga Chlamydomonas sp. UWO241

Author(s):  
Marina Cvetkovska ◽  
Xi Zhang ◽  
Galyna Vakulenko ◽  
Samuel Benzaquen ◽  
Beth Szyszka-Mroz ◽  
...  

The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this permanent stress metabolism is an adaptive advantage to life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10°C and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.

Author(s):  
Marina Cvetkovska ◽  
Beth Szyszka-Mroz ◽  
Nina Malczewski ◽  
David Smith ◽  
Norman P. A. Huner

The Antarctic alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold but is unable to survive at moderate, seemingly innocuous temperatures. We dissect the responses of UWO241 to temperature stress using global metabolomic approaches. UWO241 exhibits slow growth at 4°C, a temperature closest to its natural habitat, and faster growth at higher temperatures of 10-15°C. We demonstrate that the slower growth-rate characteristic of UWO241 at 4⁰C is not necessarily a hallmark of stress. UWO241 constitutively accumulates high levels of protective metabolites including soluble sugars, polyamines and antioxidants at a range of steady-state temperatures. In contrast, the mesophile Chlamydomonas reinhardtii accumulates these metabolites only during cold stress. Despite low growth rates, 4°C-grown UWO241 cultures had a higher capacity to respond to heat stress (24°C) and accumulated increased amounts of antioxidants, lipids and soluble sugars, when compared to cultures grown at 10-15°C. We conclude that the slower growth rate and the unique psychrophilic physiological characteristic of UWO241 grown at 4⁰C result in a permanently re-routed steady-state metabolism, which contributes to its increased resistance to heat stress. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.


2003 ◽  
Vol 83 (2) ◽  
pp. 213-220 ◽  
Author(s):  
P. E. N. Givisiez ◽  
R. L. Furlan ◽  
E. B. Malheiros ◽  
M. Macari

Incubation temperature (IT) was changed to evaluate if 6-wk-old birds become more tolerant to heat stress. After 13 d of incubation, 470 eggs were submitted to low (36.8°C), normal (37.8°C) and high (38.8°C) temperatures. At day 7 post-hatching, 144 birds were allocated to three rearing temperatures (48 birds/treatment): control/thermoneutral (35–24°C), high (33–30°C) or low (27–18°C) according to the age of the birds. Hsp70 levels in tissues of birds (1 d and 42 d), stress response (42 d) and performance were evaluated. High IT decreased brain (P < 0.01) and liver (P < 0.01) Hsp70 levels, whereas low IT decreased brain (P < 0.01) but increased heart (P < 0.01) Hsp70 levels in 1-d old chicks. Birds incubated at a low temperature had higher (P < 0.05) feed intake (1-42 d). High rearing temperature decreased feed intake (P <0.01) and liveweight (P <0.01). Colonic temperature was lower in birds incubated at a low temperature (P < 0.05) and higher in birds reared in a high temperature (P < 0.05) before heat stress. Birds reared in low temperature had higher increase in colonic temperature after heat stress (P < 0.05). Tissue Hsp70 levels were differently affected by rearing temperature, which affected broiler performance more than IT. Lower IT seemed to increase the sensitivity of birds to heat stress at market age. Key words: Heat resistance, Hsp70, incubation temperature, rearing temperature


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

2016 ◽  
Vol 22 (18) ◽  
pp. 2619-2639 ◽  
Author(s):  
Biljana Miova ◽  
Maja Dimitrovska ◽  
Suzana Dinevska-Kjovkarovska ◽  
Juan V. Esplugues ◽  
Nadezda Apostolova

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Huang ◽  
Zhinuo Huang ◽  
Ruifang Ma ◽  
Jialu Chen ◽  
Zhijun Zhang ◽  
...  

AbstractHeat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response–associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.


2003 ◽  
Vol 26 (5) ◽  
pp. 701-708 ◽  
Author(s):  
Naoki Harikai ◽  
Kanji Tomogane ◽  
Mitsue Miyamoto ◽  
Keiko Shimada ◽  
Satoshi Onodera ◽  
...  

2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

2014 ◽  
Vol 65 (1) ◽  
pp. 297-305
Author(s):  
Angela Guidone ◽  
Eugenio Parente ◽  
Teresa Zotta ◽  
Caitriona M. Guinane ◽  
Mary C. Rea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document