scholarly journals Constitutively Up-regulated Carbon Metabolism is an Adaptation to Low Temperature in the Antarctic Psychrophile Chlamydomonas sp. UWO241

Author(s):  
Marina Cvetkovska ◽  
Beth Szyszka-Mroz ◽  
Nina Malczewski ◽  
David Smith ◽  
Norman P. A. Huner

The Antarctic alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold but is unable to survive at moderate, seemingly innocuous temperatures. We dissect the responses of UWO241 to temperature stress using global metabolomic approaches. UWO241 exhibits slow growth at 4°C, a temperature closest to its natural habitat, and faster growth at higher temperatures of 10-15°C. We demonstrate that the slower growth-rate characteristic of UWO241 at 4⁰C is not necessarily a hallmark of stress. UWO241 constitutively accumulates high levels of protective metabolites including soluble sugars, polyamines and antioxidants at a range of steady-state temperatures. In contrast, the mesophile Chlamydomonas reinhardtii accumulates these metabolites only during cold stress. Despite low growth rates, 4°C-grown UWO241 cultures had a higher capacity to respond to heat stress (24°C) and accumulated increased amounts of antioxidants, lipids and soluble sugars, when compared to cultures grown at 10-15°C. We conclude that the slower growth rate and the unique psychrophilic physiological characteristic of UWO241 grown at 4⁰C result in a permanently re-routed steady-state metabolism, which contributes to its increased resistance to heat stress. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.

Author(s):  
Marina Cvetkovska ◽  
Xi Zhang ◽  
Galyna Vakulenko ◽  
Samuel Benzaquen ◽  
Beth Szyszka-Mroz ◽  
...  

The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this permanent stress metabolism is an adaptive advantage to life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10°C and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changi Wong ◽  
Yee Soon Ling ◽  
Julia Lih Suan Wee ◽  
Aazani Mujahid ◽  
Moritz Müller

AbstractNepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 621-629
Author(s):  
Mayuka Uchida ◽  
Ippei Suzuki ◽  
Keizo Ito ◽  
Mayumi Ishizuka ◽  
Yoshinori Ikenaka ◽  
...  

AbstractAntarctic minke whales (Balaenoptera bonaerensis) are migratory capital breeders that experience intensive summer feeding on Antarctic krill (Euphausia superba) in the Southern Ocean and winter breeding at lower latitudes, but their prey outside of the Antarctic is unknown. Stable isotope analyses were conducted on δ13C and δ15N from the baleen plates of ten pregnant Antarctic minke whales to understand the growth rate of the baleen plate and their diet in lower latitudes. Two to three oscillations along the length of the edge of the baleen plate were observed in δ15N, and the annual growth rate was estimated to be 75.2 ± 20.4 mm, with a small amplitude (0.97 ± 0.21 ‰). Bayesian stable isotope mixing models were used to understand the dominant prey that contributed to the isotopic component of the baleen plate using Antarctic krill from the stomach contents and reported values of Antarctic coastal krill (Euphausia crystallorophias), Antarctic silver fish (Pleuragramma antarcticum), Australian krill spp., and Australian pelagic fish spp.. The models showed that the diet composition of the most recent three records from the base of the baleen plates (model 1) and the highest δ15N values in each baleen plate (model 2) were predominantly Antarctic krill, with a contribution rate of approximately 80%. The rates were approximately 10% for Antarctic coastal krill and less than 2.0% for the two Australian prey groups in both models. These results suggest that pregnant Antarctic minke whales did not feed on enough prey outside of the Antarctic to change the stable isotope values in their baleen plates.


2003 ◽  
Vol 69 (2) ◽  
pp. 1287-1289 ◽  
Author(s):  
Mario Varcamonti ◽  
Maria R. Graziano ◽  
Romilde Pezzopane ◽  
Gino Naclerio ◽  
Slavica Arsenijevic ◽  
...  

ABSTRACT An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20°C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.


Author(s):  
J. M. Scott

The physiological rates of a normally omnivorous marine rotifer, Encentrum linnhei, were measured under the steady-state chemostat conditions in which the physiological state of the food-algae was kept constant whilst the rotifer growth rate was changed to preset levels. The specific clearance rate ranged between 50 and 100 μl/μg rotifer C/day (1.5–3.0 μ/rot/day) and varied hyperbolically with growth rate, a similar curve was obtained with the specific ingestion rate which varied between 1–2 μg C/μg rot C/day. A mean respiration rate of 0.45 μg C/μg rot C/day was obtained from oxygen consumption measurements. About 60‰ of ingested energy was found to be egested as paniculate matter and 9–4 °0 dissipated as heat, the latter comparing with a theoretical figure of 4–5‰.From rates, transfer efficiencies were obtained giving a mean net growth efficiency (K2) of 38‰ and a mean overall growth efficiency (K1 of 15‰. A curvilinear increase of Kl with growth rate contrasts with linear and hyperbolic responses found with brachionid rotifers.


1975 ◽  
Vol 84 (3) ◽  
pp. 525-528 ◽  
Author(s):  
I. C. Onwueme ◽  
S. A. Adegoroye

SUMMARYSeeds of Amaranthus, melon, cowpea and tomato were planted in moist soil at 1, 4 or 7·5 cm depth and subjected to a heat stress of 45 °C for 10 h on the day of sowing (day 0), 1 day after sowing or 2 days after sowing. Seedling emergence was retarded by heat stress, the most drastic retardation being due to heat stress on day 1 for cowpea and tomato, day 2 for melon, and day 0 for Amaranthus. Emergence also decreased with increasing depth of sowing. The interaction of depth and heat stress was also significant in all cases, such that the delay in emergence due to heat stress tended to be greater with increasing depth of sowing. The agronomic significance of the results is discussed.


2021 ◽  
Author(s):  
Hayat Ali Alafari ◽  
Magda Abdelgawad

Abstract BackgroundWithin their natural habitat, plants are subjected to abiotic stresses that include heat stress. In the current study, the effect of 4h, 24h and 48h of heat stress on Tetraena propinqua ssp. migahidii seedling’s protein profile and proteomic analyses were investigated. ResultsTotal soluble protein SDS-PAGE profile showed 18-protein bands downregulated at 4h and 48h, however, 20-protein bands were upregulated at 24h of heat stress. A proteomic analysis showed that 81 and 59 targets are involved in gene and protein expression respectively. ConclusionsThe genes and proteins involved in transcription, translation, photosynthesis, transport and other unknown metabolic processes, were differentially expressed under treatments of heat stress. These findings provide insights into the molecular mechanisms related to heat stress, in addition to its influence on the physiological traits of T. propinqua seedlings. Heat stress mediated differential regulation genes indicate a role in development and stress response of T. propinqua. The candidate dual specificity genes identified in this study paves way for more molecular analysis of up- and down-regulation.


Sign in / Sign up

Export Citation Format

Share Document