scholarly journals Bacillus subtilis Chassis in Biomanufacturing 4.0

Author(s):  
Wenbo Zhang ◽  
Xinshu Zhu ◽  
Yan Wang ◽  
Tao Li

Synthetic biology, an emerging research field, can promote biomanufacturing by offering various efficient chassis. Engineering Bacillus subtilis, an important workhorse in industrial biotechnology, through synthetic biology approaches may be a disruptive innovation. Advancements in chassis engineering, a synthetic biology strategy for genome-reduced cell factories, cell-free systems, and synthetic microbial consortia would be a driving force facilitating microbial production. We discussed chassis engineering categories and applications for B. subtilis. Prospects and challenges for chassis engineering in B. subtilis were also analyzed in this review article.

2019 ◽  
Vol 59 ◽  
pp. 1-7 ◽  
Author(s):  
Amanda Y van Tilburg ◽  
Haojie Cao ◽  
Sjoerd B van der Meulen ◽  
Ana Solopova ◽  
Oscar P Kuipers

2021 ◽  
Author(s):  
Jian-Wen Ye ◽  
Guo-Qiang Chen

Abstract With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 44
Author(s):  
Muhammad Aminu Auwalu ◽  
Shanshan Cheng

Biological applications of fluorescent probes are rapidly increasing in the supramolecular chemistry research field. Several organic dyes are being utilized currently in developing and advancing this attractive research area, of which diketopyrrolopyrrole (DPP) organic dyes show an exceptional photophysical features (high-fluorescence quantum yield (FQY), good photochemical and thermal stability) that are essential properties for biological applications. Great efforts have been made in recent years towards developing novel fluorescent DPPs by different chemists for such applications, and some positive results have been reported. As a result, this review article gives an account of the progress that has so far been made very recently, mainly within the last decade, in that we selectively focus on and discuss more from 2015 to present on some recent scholarly achievements of fluorescent DPPs: quantum yield, aggregation-induced emission (AIE), solid-state emission, bio-imaging, cancer/tumor therapy, mitochondria staining and some polymeric fluorescent DPPs. Finally, this review article highlights researchers working on luminescent DPPs and the future prospects in some key areas towards designing DPP-based fluorescent probes in order to boost their photophysical and biological applications more effectively.


RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 78161-78169 ◽  
Author(s):  
Jiajun Hu ◽  
Yiyun Xue ◽  
Jixiang Li ◽  
Lei Wang ◽  
Shiping Zhang ◽  
...  

CO2 fixation efficiency of the devised synthetic microbial consortia with both autotrophic–autotrophic and autotrophic–heterotrophic microbial interactions were higher than the sum of theoretical CO2 fixation efficiency of the microbial components.


2019 ◽  
Vol 7 (9) ◽  
pp. 355
Author(s):  
Trygve Brautaset ◽  
Svein Valla

Microorganisms are widely used in industrial biotechnology as cell factories for the sustainable production of a wide range of compounds and chemicals [...]


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Razan N. Alnahhas ◽  
Mehdi Sadeghpour ◽  
Ye Chen ◽  
Alexis A. Frey ◽  
William Ott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document