scholarly journals β-diversity in temperate grasslands is driven by stronger environmental filtering of plant species with large genomes

Author(s):  
Hai-Yang Zhang ◽  
Xiaotao Lü ◽  
cunzheng wei ◽  
Jeff Powell ◽  
Xiaobo Wang ◽  
...  

Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS, i.e. nuclear DNA content) determines species’ capacity to tolerate environmental stress and therefore potentially drives community assembly. However, its role in driving β-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and investigated their occurrences within plant communities across 52 sites spanning a 3200-km transect in the temperate grasslands of China. Using species distribution modelling, we found that environmental factors showed larger effects on β-diversity of large-GS than that of small-GS species and that communities with abundant resources had a greater representation of large-GS species. The latter finding was confirmed following analysis of data from a 10-yr resource (water, nitrogen, and phosphorus) manipulation experiment in which resource addition resulted in increased community weighted GS based on plant biomass estimates, suggesting that large-GS species are more sensitive to environmental resource limitation and explaining the greater environmental selection on β-diversity of large-GS species. These findings highlight the roles of GS in driving community assembly and predicting species responses to global change.

Author(s):  
Hai-Yang Zhang ◽  
Xiaotao Lü ◽  
cunzheng wei ◽  
Jeff Powell ◽  
Xiaobo Wang ◽  
...  

Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS, i.e. nuclear DNA content) determines species’ capacity to tolerate environmental stress or to exploit new environments and therefore potentially drive community assembly. However, its role in driving β-diversity (i.e., the site-to-site variability in species composition) remains unclear. We measured GS for 169 plant species and investigated their occurrences within plant communities across 52 sites spanning a 3200-km transect in the temperate grasslands of China. We found environmental factors showed larger effects on β-diversity of large-GS than that of small-GS species. Community weighted mean GS increased with mean annual precipitation, soil total nitrogen and phosphorus concentrations, but decreased with mean annual temperature, suggesting a negative selection against species with large GS in resources-limited or warmer climates. These findings highlight the roles for GS in driving community assembly and predicting species responses to climate change.


A survey of work on meiotic duration in diploid plants shows that the duration is positively correlated with the DNA content per nucleus and with the mitotic cycle time. However, meiotic duration is not solely determined by the DNA content per nucleus but is also affected by chromosomal organization, DNA structure and the developmental pattern of the organism. Thus, in three polyploid plant species meiosis is much shorter and in three animal species it is much longer than would be expected in diploid plant species having corresponding DNA contents. Differences in meiotic duration in plant species are usually the result of proportional differences in all the stages of meiosis. Factors affecting the initiation, control and duration of meiosis are discussed. The consequences of changes in nuclear DNA content on developmental processes and the life cycle in plants are considered. It is suggested that DNA influences development in two ways, first directly through its informational content, and second indirectly by the physical mechanical effects of its mass independent of its informational content.


2019 ◽  
Vol 81 (2) ◽  
Author(s):  
Eduardo R. Cunha ◽  
Kirk O. Winemiller ◽  
João C. B. da Silva ◽  
Taise M. Lopes ◽  
Luiz C. Gomes ◽  
...  

1991 ◽  
Vol 9 (4) ◽  
pp. 415-415 ◽  
Author(s):  
K. Arumuganathan ◽  
E. D. Earle

1991 ◽  
Vol 9 (3) ◽  
pp. 208-218 ◽  
Author(s):  
K. Arumuganathan ◽  
E. D. Earle

1988 ◽  
Vol 12 (4) ◽  
pp. 503-507 ◽  
Author(s):  
Jaap F. Hamming ◽  
Lodewijk J. D. M. Schelfhout ◽  
Cees J. Cornelisse ◽  
Cornelis J. H. van de Velde ◽  
Bernard M. Goslings ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lori Peacock ◽  
Chris Kay ◽  
Chloe Farren ◽  
Mick Bailey ◽  
Mark Carrington ◽  
...  

AbstractMeiosis is a core feature of eukaryotes that occurs in all major groups, including the early diverging excavates. In this group, meiosis and production of haploid gametes have been described in the pathogenic protist, Trypanosoma brucei, and mating occurs in the salivary glands of the insect vector, the tsetse fly. Here, we searched for intermediate meiotic stages among trypanosomes from tsetse salivary glands. Many different cell types were recovered, including trypanosomes in Meiosis I and gametes. Significantly, we found trypanosomes containing three nuclei with a 1:2:1 ratio of DNA contents. Some of these cells were undergoing cytokinesis, yielding a mononucleate gamete and a binucleate cell with a nuclear DNA content ratio of 1:2. This cell subsequently produced three more gametes in two further rounds of division. Expression of the cell fusion protein HAP2 (GCS1) was not confined to gametes, but also extended to meiotic intermediates. We propose a model whereby the two nuclei resulting from Meiosis I undergo asynchronous Meiosis II divisions with sequential production of haploid gametes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Sign in / Sign up

Export Citation Format

Share Document