scholarly journals IncHI1A plasmids potentially facilitate a horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage

Author(s):  
Asmus Olesen ◽  
Rafel Pinilla-Redondo ◽  
Mads Hansen ◽  
Jakob Russel ◽  
Arnaud Dechesne ◽  
...  

Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, that R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer to other families, even other phyla. Indicating, that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of especially Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range as R27. In contrast to R27, pB10 had a high host divergence. By cultivative enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.

Author(s):  
Asmus Olesen ◽  
Rafel Pinilla-Redondo ◽  
Mads Hansen ◽  
Jakob Russel ◽  
Arnaud Dechesne ◽  
...  

Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, that R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer to other families, even other phyla. Indicating, that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of especially Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range as R27. In contrast to R27, pB10 had a high host divergence. By culture enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 650 ◽  
Author(s):  
Ioanna Zerva ◽  
Ioanna Alexandropoulou ◽  
Maria Panopoulou ◽  
Paraschos Melidis ◽  
Spyridon Ntougias

Wastewater treatment plants (WWTPs) highly contribute to the transmission of antibiotic resistance genes (ARGs) in the environment. In this work, the diversity of ermF, ermB, sul1 and int1-enconding genes was examined in the influent, the mixed liquor and the effluent of a full-scale WWTP. Based on the clones analyzed, similar genotypes were recorded at all process stages. However, distinct genotypes of int1 were responsible for the expression of sul1 and ermF genes in Gammaproteobacteria and Bacteroidetes, respectively. Due to the detection of similar ARGs profiles throughout the biological process, it is concluded that additional treatment is needed for their retention.


Sign in / Sign up

Export Citation Format

Share Document