scholarly journals Dark respiration rates are not determined by differences in mitochondrial capacity, abundance and ultrastructure in C4 leaves

Author(s):  
Yuzhen Fan ◽  
Andrew Scafaro ◽  
Shinichi Asao ◽  
Robert Furbank ◽  
Antony Agostino ◽  
...  

Our understanding of the regulation of respiration in C plants, where mitochondria play different roles in the different types of C photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (R), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent R are associated with mitochondrial number, volume and ultrastructure. We found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and R. We suggest that R is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.

2008 ◽  
Vol 35 (6) ◽  
pp. 439 ◽  
Author(s):  
A. P. O'Grady ◽  
D. Worledge ◽  
A. Wilkinson ◽  
M. Battaglia

Within canopy gradients in light-saturated photosynthesis (Amax), foliar nitrogen ([N]area) and leaf dark respiration (R15) were studied in the canopies of dominant and suppressed trees within an even-aged (4-year-old) Eucalyptus globulus (Labill) stand in southern Tasmania. Despite being an even-aged stand growing in a relatively uniform environment with respect to nutrient and water availability, the stand exhibited considerable structural complexity. Diameter at 1.3 m ranged between 3 cm and 21 cm, trees average 12 m height and stand leaf area index was ~6 m2 m–2 leading to strong gradients in light availability. We were interested in understanding the processes governing canopy production in trees of contrasting dominance classes. Vertical gradients in photosynthesis and foliar respiration were studied within the canopies of dominant and suppressed trees during 2006 and 2007. Amax varied from ~18 μmol m–2 s–1 in the upper canopy to 3 μmol m–2 s–1 at lower canopy positions. On average, Amax were higher in the dominant trees than in the suppressed trees. However, at any given height, Amax were similar in suppressed and dominant trees and were strongly related to leaf nitrogen content. Dark respiration varied from ~1.4 μmol m–2 s–1 in the upper canopy to 0.2 μmol m–2 s–1 in the lower canopy positions. In contrast to the patterns for Amax, dark respiration rates in the suppressed trees were higher than dominant trees at similar canopy positions. Respiration rates were also strongly related to [N]area and to Amax.


1998 ◽  
Vol 46 (1) ◽  
pp. 103 ◽  
Author(s):  
Catherine E. Lovelock

Photosynthetic characteristics of tree species from the tropical C3 monocotyledon genus Pandanus were compared with C3 dicotyledon species growing in similar environments. The Pandanus species had similar maximum photosynthetic rates (Amax) to dicotyledon tree species in leaves from both sun and shaded environments when Amax was expressed on an area basis. Because of the low specific leaf area of the schlerophyllous leaves of the Pandanus compared to the dicotyledon species, the similarity in Amax was no longer evident when Amax was expressed on a dry-weight basis. Leaf dark respiration rates of the Pandanus on a leaf area and weight basis were generally lower than the shade-intolerant dicotyledons and similar to the shade-tolerant dicotyledon species. Low dark respiration rates and low specific leaf area of the Pandanus may be important characteristics for growth and survival in environments where resource levels are low and the likelihood of tissue damage is high.


2020 ◽  
Vol 228 (1) ◽  
pp. 56-69 ◽  
Author(s):  
Fatimah Azzahra Ahmad Rashid ◽  
Andrew P. Scafaro ◽  
Shinichi Asao ◽  
Ricarda Fenske ◽  
Roderick C. Dewar ◽  
...  

2017 ◽  
Vol 44 (11) ◽  
pp. 1075 ◽  
Author(s):  
Michael J. Aspinwall ◽  
Vinod K. Jacob ◽  
Chris J. Blackman ◽  
Renee A. Smith ◽  
Mark G. Tjoelker ◽  
...  

The effects of elevated CO2 on the short-term temperature response of leaf dark respiration (R) remain uncertain for many forest tree species. Likewise, variation in leaf R among populations within tree species and potential interactive effects of elevated CO2 are poorly understood. We addressed these uncertainties by measuring the short-term temperature response of leaf R in 15 provenances of Eucalyptus grandis W. Hill ex Maiden from contrasting thermal environments grown under ambient [CO2] (aCO2; 400 µmol mol–1) and elevated [CO2] (640 µmol mol–1; eCO2). Leaf R per unit area (Rarea) measured across a range of temperatures was higher in trees grown in eCO2 and varied up to 104% among provenances. However, eCO2 increased leaf dry mass per unit area (LMA) by 21%, and when R was expressed on a mass basis (i.e. Rmass), it did not differ between CO2 treatments. Likewise, accounting for differences in LMA among provenances, Rmass did not differ among provenances. The temperature sensitivity of R (i.e. Q10) did not differ between CO2 treatments or among provenances. We conclude that eCO2 had no direct effect on the temperature response of R in E. grandis, and respiratory physiology was similar among provenances of E. grandis regardless of home-climate temperature conditions.


2013 ◽  
Vol 40 (11) ◽  
pp. 1159 ◽  
Author(s):  
Yonggang Chi ◽  
Ming Xu ◽  
Ruichang Shen ◽  
Shiqiang Wan

A better understanding of thermal acclimation of leaf dark respiration in response to nocturnal and diurnal warming could help accurately predict the changes in carbon exchange of terrestrial ecosystems under global warming, especially under the asymmetric warming. A field manipulative experiment was established with control, nocturnal warming (1800–0600 hours), diurnal warming (0600–1800 hours), and diel warming (24 h) under naturally fluctuating conditions in a semiarid temperate steppe in northern China in April 2006. Temperature response curves of in situ leaf dark respiration for Stipa krylovii Roshev. were measured at night (Rn) and after 30 min of darkness imposed in the daytime (Rd). Leaf nonstructural carbohydrates were determined before sunrise and at sunset. Results showed that Rn could acclimate to nocturnal warming and diurnal warming, but Rd could not. The decreases in Q10 (temperature sensitivity) of Rn under nocturnal-warming and diurnal warming regimes might be attributed to greater depletion of total nonstructural carbohydrates (TNC). The real-time and intertwined metabolic interactions between chloroplastic and mitochondrial metabolism in the daytime could affect the impacts of warming on metabolite pools and the distinct response of Rn and Rd to warming. Projection on climate change–carbon feedback under climate warming must account for thermal acclimation of leaf dark respiration separately by Rn and Rd.


2002 ◽  
Vol 29 (12) ◽  
pp. 1465 ◽  
Author(s):  
Edwin Kraus ◽  
Margje Voeten ◽  
Hans Lambers

Autotoxicity and allelopathy affect the respiration and yield of GL66 and GL72, two populations of perennial ryegrass (Lolium perenne L. cv. S23) that were originally selected for contrasting rates of mature-leaf dark respiration under conditions where allelopathic effects could not occur and autotoxic effects were minimal. The aim of this study was to further investigate growth and biomass allocation of these two populations in relation to their autotoxic and allelopathic properties. To this end, plants were subjected to two conditions (monoculture and mixed culture) and two treatments (growth in 'renewed' and 'replenished' nutrient solution, allowing for short- and long-term accumulation of allelochemicals, respectively). The fast-respiring population, GL66, showed a reduced total yield due to allelopathic effects only when long-term accumulation of allelochemicals was allowed (mixed culture, replenished). However, short-term accumulation (mixed culture, renewed) of allelochemicals was sufficient to affect allocation of biomass to leaf sheaths. The slow-respiring population, GL72, suffered from autotoxicity only when long-term accumulation was allowed (monoculture, replenished), and from allelopathy under both short- and long-term accumulation (mixed culture, either renewed or replenished). The predominant allelopathic and autotoxic effect was on dry matter percentage and dry weight of leaf sheaths. We conclude that the roots of both populations release one or more chemical compounds that primarily affect biomass allocation to leaf sheaths, both of the same and of the other population. Sensitivity to the putative inhibitor(s) released by the other population was greater than sensitivity to the inhibitor(s) released by a population's own roots.


Weed Science ◽  
1980 ◽  
Vol 28 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Kriton K. Hatzios ◽  
Donald Penner

The effect of the herbicide buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone} on photosynthesis, respiration, anthocyanin formation and leaf ultrastructure of corn (Zea mays L. ‘Pioneer 3780’) was studied following pre- or postemergence applications. Total photosynthesis and dark respiration were measured with an infrared CO2 analyzer in an open air flow system 12, 18, and 24 days after preemergence treatment with 0, 0.56, 1.12, and 2.24 kg/ha of buthidazole. The 0.56 and 1.12 kg/ha preemergence treatments had no effect on total corn photosynthesis even 24 days after treatment, whereas buthidazole at 2.24 kg/ha inhibited photosynthesis as early as 12 days. Total photosynthesis and dark respiration were also measured in whole plants, 30 cm tall, before herbicide application and 4, 24, 48, and 96 h after postemergence treatment with buthidazole at 0, 0.28, 0.56, 0.84, and 1.12 kg/ha. Following postemergence treatment, buthidazole inhibited total corn photosynthesis at any rate examined as early as 4 h after treatment. Neither pre- or postemergence buthidazole applications influenced respiration with the exception of a transitory increase caused by 0.56 kg/ha 12 days after preemergence treatment and by 0.84 and 1.12 kg/ha 4 h after postemergence treatment. Transmission electron micrographs revealed that buthidazole applied postemergence at 0.28 and 1.12 kg/ha reduced or prevented the accumulation of starch in bundle sheath chloroplasts as early as 24 h after treatment. Ultrastructural disruptions in some mesophyll chloroplasts of treated corn plants were also evident. Preemergence application of buthidazole at rates of 0.28, 0.42, 0.56, and 1.12 kg/ha inhibited anthocyanin formation indicating an alteration in corn metabolism.


Sign in / Sign up

Export Citation Format

Share Document