scholarly journals Facilitated propylene transport in mixed matrix membranes containing ZIF-8@Agmim core-shell hybrid material

Author(s):  
Xiaoquan Feng ◽  
Donglai Peng ◽  
Meixia Shan ◽  
Xinpu Niu ◽  
Ya-Tao Zhang

The ZIF-8@Agmim core-shell hybrid material was synthesized via a favorable post-modification method of ion exchange (PMIE). This infrequent ZIF-8@Agmim core-shell structure maintains a well- integrated pore size that is almost the same as ZIF-8. The similar equilibrium isotherms with ZIF-8 and better kinetic separation towards propylene/propane than ZIF-8 render ZIF-8@Agmim to be an interesting candidate for propylene/propane separation. The core-shell hybrid nanomaterial was further used as nanofillers in the polymer of intrinsic microporosity matrix (PIM-1) for propylene/propane separation. The resultant MMMs exhibited a simultaneous increase in C3H6 permeability and C3H6/C3H8 ideal selectivity compared to pure polymer membrane owing to a synergistic effect of molecular sieving from ZIF-8 and π-complexation of Ag+ with propylene. The separation performance of the prepared MMM surpasses the upper bound line of polymer membranes. Furthermore, the hybrid materials possess superb photochemical stability and the corresponding MMMs exhibit excellent anti-aging property and long-term stability.

2017 ◽  
Vol 39 (12) ◽  
pp. 4486-4495 ◽  
Author(s):  
Jinpeng Hou ◽  
Xueqin Li ◽  
Ruili Guo ◽  
Yun Qin ◽  
Jianshu Zhang

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Fernando Pardo ◽  
Sergio V. Gutiérrez-Hernández ◽  
Carolina Hermida-Merino ◽  
João M. M. Araújo ◽  
Manuel M. Piñeiro ◽  
...  

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32 = 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Magdalena Warczak ◽  
Marianna Gniadek ◽  
Kamil Hermanowski ◽  
Magdalena Osial

Abstract Over the recent decades, conducting polymers have received great interest in many fields including microelectronics, energy conversion devices, and biosensing due to their unique properties like electrical conductivity, stability, and simple synthesis. Modification of conducting polymers with noble metals e.g. gold enhances their properties and opens new opportunities to also apply them in other fields like electrocatalysis. Here, we focus on the synthesis of hybrid material based on polyindole (PIN) nanobrush modified with gold nanoparticles and its application towards electrooxidation of ethanol. The paper presents systematic studies from synthesis to electrochemical sensing applications. For the characterization of PIN–Au composites, scanning electron microscopy and X-ray diffraction analyses were used. The electrocatalytic performance of the proposed hybrid material towards alcohol oxidation was studied in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. The results show that PIN–Au hybrid can be employed as an effective and sensitive platform for the detection of alcohols, which makes it a promising material in electrocatalysis or sensors. Moreover, the proposed composite exhibits electrocatalytic activity towards ethanol oxidation, which combined with its good long-term stability opens the opportunity for its application in fuel cells.


2016 ◽  
Vol 4 (27) ◽  
pp. 10627-10634 ◽  
Author(s):  
Stefan J. D. Smith ◽  
Cher Hon Lau ◽  
James I. Mardel ◽  
Melanie Kitchin ◽  
Kristina Konstas ◽  
...  

Addressing the mechanical weakness and physical aging of glassy mixed matrix membranes to realise their potential for enhancing the separation performance of current membrane technologies.


Sign in / Sign up

Export Citation Format

Share Document