scholarly journals Complex dynamics of a discrete-time prey-predator system with Allee effect

Author(s):  
Özlem Gümüş

In this paper, we investigate the stability and bifurcation of a discrete-time prey-predator system which is subject to an Allee effect on prey population. It is concluded that the system undergoes flip and Neimark- Sacker bifurcations in a small neigborhood of the unique positive fixed point which depends on the number of prey-predator. The chaotic behavior that emerges with Neimark-Sacker bifurcation is controlled by the OGY method and hybrid control method. Moreover, the numerical simulations are done to demonsrate the theoratical results.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Q. Khan ◽  
M. B. Javaid

AbstractThe local dynamics with different topological classifications, bifurcation analysis, and chaos control for the phytoplankton–zooplankton model, which is a discrete analogue of the continuous-time model by a forward Euler scheme, are investigated. It is proved that the discrete-time phytoplankton–zooplankton model has trivial and semitrivial fixed points for all involved parameters, but it has an interior fixed point under the definite parametric condition. Then, by linear stability theory, local dynamics with different topological classifications are investigated around trivial, semitrivial, and interior fixed points. Further, for the discrete-time phytoplankton–zooplankton model, the existence of periodic points is also investigated. The existence of possible bifurcations around trivial, semitrivial, and interior fixed points is also investigated, and it is proved that there exists a transcritical bifurcation around a trivial fixed point. It is also proved that around trivial and semitrivial fixed points of the phytoplankton–zooplankton model there exists no flip bifurcation, but around an interior fixed point there exist both Neimark–Sacker and flip bifurcations. From the viewpoint of biology, the occurrence of Neimark–Sacker implies that there exist periodic or quasi-periodic oscillations between phytoplankton and zooplankton populations. Next, the feedback control method is utilized to stabilize chaos existing in the phytoplankton–zooplankton model. Finally, simulations are presented to validate not only obtained results but also the complex dynamics with orbits of period-8, 9, 10, 11, 14, 15 and chaotic behavior of the discrete-time phytoplankton–zooplankton model.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
K. S. Al-Basyouni ◽  
A. Q. Khan

In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ + 2 . It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.


2021 ◽  
Vol 87 (2) ◽  
pp. 415-439
Author(s):  
Muhammad Salman Khan ◽  

In this manuscript, we discuss a four-dimensional cubic autocatalator chemical reaction model in continuous form. We investigate the existence of one and only positive fixed point and then we have obtained some parametric conditions for local stability of continuous system by using Routh-Hurwitz stability criteria. Moreover, we discretize the four-dimensional continuous cubic autocatalator chemical reaction model by using Euler’s forward method and then by using a nonstandard difference scheme we obtained a consistent discrete-time counterpart of four-dimensional cubic autocatalator chemical reaction model. Parametric conditions for local asymptotic stability of one and only positive fixed point of obtained system are also discussed. It is shown that the obtained system experiences the Neimark-Sacker bifurcation at one and only positive fixed point by using a general standard for Neimark-Sacker bifurcation. The discrete-time counterpart of genuine four-dimensional system displays chaotic dynamics at different standards of bifurcation parameter. Furthermore, the control of Neimark-Sacker bifurcation and chaos is also deliberated by using a generalized hybrid control scheme, which is based on parameter perturbation and feedback control. Finally, some numerical examples are given to strengthen our theoretical results.


2014 ◽  
Vol 24 (09) ◽  
pp. 1450106 ◽  
Author(s):  
Sourav Rana ◽  
Amiya Ranjan Bhowmick ◽  
Sabyasachi Bhattacharya

We study the impact of the Allee effect and prey refuge on the stability of a discrete time predator–prey system. We focus on the stability behavior of the system with the Allee effect in predator, prey and both populations. Based on the combination of analytical and numerical results, we observe that: (1) the Allee effect stabilizes the systems dynamics in a moderate value of prey refuge. (2) For a large fraction of prey refuge no significant improvement in stability is observed due to Allee effect. (3) Refuge may play an important role in managing the populations which are subject to the Allee effect. The population remains stable at an intermediate level of refuge parameter, whereas at relatively low and high refuge effect, prey exhibits chaotic oscillation. Such chaotic behavior is suppressed in the presence of Allee effect. The Allee mechanism and refuge are considered simultaneously on the populations and is shown to have a significant impact on the predator–prey dynamics that may be helpful in the conservation of endangered species.


Author(s):  
A. George Maria Selvam ◽  
R. Dhineshbabu

This chapter considers the dynamical behavior of a new form of fractional order three-dimensional continuous time prey-predator system and its discretized counterpart. Existence and uniqueness of solutions is obtained. The dynamic nature of the model is discussed through local stability analysis of the steady states. Qualitative behavior of the model reveals rich and complex dynamics as exhibited by the discrete-time fractional order model. Moreover, the bifurcation theory is applied to investigate the presence of Neimark-Sacker and period-doubling bifurcations at the coexistence steady state taking h as a bifurcation parameter for the discrete fractional order system. Also, the trajectories, phase diagrams, limit cycles, bifurcation diagrams, and chaotic attractors are obtained for biologically meaningful sets of parameter values for the discretized system. Finally, the analytical results are strengthened with appropriate numerical examples and they demonstrate the chaotic behavior over a range of parameters. Chaos control is achieved by the hybrid control method.


2021 ◽  
pp. 1-18
Author(s):  
J. M. CUSHING ◽  
KATHRYN STEFANKO

We derive and study a Darwinian dynamic model based on a low-dimensional discrete- time population model focused on two features: density-dependent fertility and a trade-off between inherent (density free) fertility and post-reproduction survival. Both features are assumed to be dependent on a phenotypic trait subject to natural selection. The model tracks the dynamics of the population coupled with that of the population mean trait. We study the stability properties of equilibria by means of bifurcation theory. Whether post-reproduction survival at equilibrium is low or high is shown, in this model, to depend significantly on the nature of the trait dependence of the density effects. An Allee effect can also play a significant role.


2020 ◽  
Vol 13 (04) ◽  
pp. 2050022 ◽  
Author(s):  
A. Q. Khan ◽  
T. Khalique

In this paper, bifurcations and chaos control in a discrete-time Lotka–Volterra predator–prey model have been studied in quadrant-[Formula: see text]. It is shown that for all parametric values, model has boundary equilibria: [Formula: see text], and the unique positive equilibrium point: [Formula: see text] if [Formula: see text]. By Linearization method, we explored the local dynamics along with different topological classifications about equilibria. We also explored the boundedness of positive solution, global dynamics, and existence of prime-period and periodic points of the model. It is explored that flip bifurcation occurs about boundary equilibria: [Formula: see text], and also there exists a flip bifurcation when parameters of the discrete-time model vary in a small neighborhood of [Formula: see text]. Further, it is also explored that about [Formula: see text] the model undergoes a N–S bifurcation, and meanwhile a stable close invariant curves appears. From the perspective of biology, these curves imply that between predator and prey populations, there exist periodic or quasi-periodic oscillations. Some simulations are presented to illustrate not only main results but also reveals the complex dynamics such as the orbits of period-2,3,13,15,17 and 23. The Maximum Lyapunov exponents as well as fractal dimension are computed numerically to justify the chaotic behaviors in the model. Finally, feedback control method is applied to stabilize chaos existing in the model.


Author(s):  
Kaveh Merat ◽  
Jafar Abbaszadeh Chekan ◽  
Hassan Salarieh ◽  
Aria Alasty

In this article by introducing and subsequently applying the Min–Max method, chaos has been suppressed in discrete time systems. By using this nonlinear technique, the chaotic behavior of Behrens–Feichtinger model is stabilized on its first and second-order unstable fixed points (UFP) in presence and absence of noise signal. In this step, a comparison has also been carried out among the proposed Min–Max controller and the Pyragas delayed feedback control method. Next, to reduce the computation required for controller design, the clustering method has been introduced as a quantization method in the Min–Max control approach. To improve the performance of the acquired controller through clustering method obtained with the Min–Max method, a linear optimal controller is also introduced and combined with the previously discussed nonlinear control law. The resultant combined controller has been applied on the Henon map and through comparison with both Pyragas controller, and the linear optimal controller alone, its advantages are discussed.


2014 ◽  
Vol 1006-1007 ◽  
pp. 711-714
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

This paper investigates the problems of stability analysis and stabilization for a class of switched fuzzy discrete-time systems. Based on a common Lyapunov functional, a switching control method has been developed for the stability analysis of switched discrete-time fuzzy systems. A new stabilization approach based on a switching parallel distributed compensation scheme is given for the closed-loop switched fuzzy systems. Finally, the illustrative example is provided to demonstrate the effectiveness of the techniques proposed in this paper.


2010 ◽  
Vol 2010 ◽  
pp. 1-18
Author(s):  
S. H. Saker

The objective of this paper is to systematically study the stability and oscillation of the discrete delay annual plants model. In particular, we establish some sufficient conditions for global stability of the unique positive fixed point and establish an explicit sufficient condition for oscillation of the positive solutions about the fixed point. Some illustrative examples and numerical simulations are included to demonstrate the validity and applicability of the results.


Sign in / Sign up

Export Citation Format

Share Document