scholarly journals One-pot synthesis of high-capacity silicon anodes via on-copper growth of a semi-conducting, porous polymer

Author(s):  
Michael Bojdys

Silicon-based anodes with lithium ions as charge carriers have the highest predicted theoretical specific capacity of 3579 mA h g (for LiSi). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semi-conducting organic framework (i) adheres to the current collector on which it grows via cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (iii) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional layered Ni-rich oxide cathode.

2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Michael Bojdys ◽  
Jieyang Huang ◽  
Anna Urbanski ◽  
Andréa Martin ◽  
Ranjit Kulkarni ◽  
...  

Abstract Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g-1 (for Li15Si4) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows via cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Author(s):  
Jieyang Huang ◽  
Andréa Martin ◽  
Anna Urbanski ◽  
Ranjit Kulkarni ◽  
Patrick Amsalem ◽  
...  

Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g<sup>-1</sup> (for Li<sub>15</sub>Si<sub>4</sub>) while being comparatively safe. Contemporary electrodes do not achieve these theoretical values largely because production paradigms remained unchanged since their inception and rely on the mixing of weakly coordinated, multiple components. In this paper, we present the one-pot synthesis of high-performance anodes that reach the theoretical capacity of the fully lithiated state of silicon. Here, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The current collector (Cu) acts as the catalyst for the formation of a semi-conductive triazine-based graphdiyne polymer network that grows around the inorganic, active material (Si). In comparison to established electrode assemblies, this process (i) omits any steps related to curing, drying, and annealing, (ii) does away with binders and conductivity-enhancing additives that decrease volumetric and gravimetric capacity, and (iii) cancels out the detrimental effects on performance, chemical and physical stability of conventional, three-component anodes (Si, binder, carbon black). This is because, the porous, semi-conducting organic framework (i) adheres to the current collector on which it grows <i>via</i> cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles <i>via</i> conjugated, covalent bonds, and (iii) enables selective transport of mass and charge-carriers (electrolyte and Li-ions) through pores of defined size. As a result, the anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon, excellent performances in terms of cycling (exceeding 70% capacity retention after 100 cycles), and high mechanical and thermal stability. These high-performance anodes pave the way for use in flexible, wearable electronics and in environmentally demanding applications.


2021 ◽  
Vol 9 (4) ◽  
pp. 2334-2344
Author(s):  
Dongyeeb Shin ◽  
Yongkwon Song ◽  
Donghyeon Nam ◽  
Jun Hyuk Moon ◽  
Seung Woo Lee ◽  
...  

We report a sulfur copolymer cathode with high areal/specific capacity, rate capability, and cycling stability using carbonization-induced Ni electroplating and interfacial interaction-controlled conductive capping layer.


2013 ◽  
Vol 724-725 ◽  
pp. 1037-1041 ◽  
Author(s):  
Ling Min Yao ◽  
Xian Hua Hou ◽  
She Jun Hu ◽  
Xiao Qin Tang ◽  
Xiang Liu

Carbon-coated ZnFe2O4lithium anode with nanosize has been successfully synthesized by a one-pot green-chemical hydrothermal reaction with glucose as carbon source. An analysis of electrochemical performance showed that the prepared carbon-coated ZnFe2O4anode exhibited high capacity retention. The initial charge-discharge specific capacity was approximately 1388 mAhg-1and 1008 mAhg-1, respectively. And a reversible specific capacity could be maintained about 700 mAhg-1after 100 cycles at a constant current density of 100 mAg-1, indicating good cycle ability compared with majority reported literatures. The excellent electrochemical performance was related to the carbon coating and nanoparticles, with which the electric conductivity of the material increased and the volume expansion and pulverization of the particles became increasingly reduced.


2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 678
Author(s):  
Zhongkai Wu ◽  
Haifu Huang ◽  
Wenhui Xiong ◽  
Shiming Yang ◽  
Huanhuan Huang ◽  
...  

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g−1 at 1 A g−1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g−1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Sign in / Sign up

Export Citation Format

Share Document