scholarly journals Transparent insulation materials market in Europe

2020 ◽  
Vol 29 (3) ◽  
pp. 377-387
Author(s):  
Elżbieta Radziszewska-Zielina ◽  
Filip Kuraj

This paper presents the European market of transparent insulation materials as viewed by manufacturers. The objective of the study was to analyse the application of transparent insulation materials in the construction sector across Europe, determine the popularity of various technologies and materials used to manufacture them, the competition among transparent insulation manufacturers, investment in the development of new transparent insulation technologies, and trends in demand for transparent insulation in Europe. The analysis was performed on the basis of a survey of manufacturers. The use of transparent insulation is associated with high cost, yet the potential return on investment in the form of savings over the course of a building’s life-cycle convinces many potential developers to apply these materials. Based on the results of the survey, it can be concluded that European companies follow the increase in energy-efficiency and the transparent insulation market is prosperous, yet differs from country to country. It was observed that the positive perception of indirect heat gain transparent insulation systems was the most prevalent in Germany. The paper also explores the situation on the author’s domestic market – the Polish transparent thermal insulation market.

2021 ◽  
pp. 45-52
Author(s):  
G.I. Petrov ◽  
V.N. Kornienko ◽  
A.G. Donetskikh

Improving energy efficiency and energy saving in refrigeration technology depends largely on the use of modern thermal insulation materials in the thermal insulation structures of refrigeration pipelines. The article presents a comparative analysis of the thermal characteristics and operational properties of heat-insulating materials used in refrigeration. The features of RUFLEX thermal insulation materials based on foamed synthetic rubber produced from domestic raw materials and their compliance with the requirements of energy efficiency, durability, operational reliability and safety are considered.


2014 ◽  
Vol 82 ◽  
pp. 466-481 ◽  
Author(s):  
Nuno Pargana ◽  
Manuel Duarte Pinheiro ◽  
José Dinis Silvestre ◽  
Jorge de Brito

Author(s):  
Frank Grealish ◽  
Iggy Roddy

There are currently a wide variety of insulation systems available for deep water subsea applications. These systems are applied in a number of different configurations including externally bonded systems, pre-manufactured insulation modules that are strapped on to subsea structures and pipe-in-pipe (PIP) insulation systems. The most common insulation materials include polymers such as polyurethane, epoxies and polypropylene and for deep water applications these are used in two main forms; syntactic foam and composite syntactic foam. The limits associated with current insulation systems include lack of experience on the performance of these systems in long-term deepwater service and relatively low temperature limits when exposed to hot/wet conditions. At present, tests for assessing their thermal and physical properties are manufacturer-dependent and, for a purchaser of such systems, need to be interpreted across a range of existing and new materials and manufacturer specifications. The immediate and long-term effects of temperature, hydrostatic pressure and environmental exposure are not yet fully understood. Currently there is a lack of agreed-upon standards for insulation materials. There is a requirement in the industry for the development of consistent standards for the specification, design, materials, manufacturing and testing of insulation materials and systems. To address this requirement a Joint Industry Project (JIP) commenced in April 2000 to develop a new industry wide standard for insulation and buoyancy materials, designated the InSpec JIP. Twenty companies are participating in the JIP, including nine oil companies, eight manufacturers of insulation/buoyancy products and three contractors. This paper presents a review of the current state-of-the-art for thermal insulation systems for deep water applications. The capabilities of alternative systems are reviewed and evaluated. The key issues associated with each system type and critical parameters for the most common insulation materials are presented and discussed. The development of industry standards within the InSpec JIP to address the critical issues for qualification is highlighted within this paper.


2016 ◽  
Vol 678 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Kono ◽  
Yutaka Goto ◽  
York Ostermeyer ◽  
Rolf Frischknecht ◽  
Holger Wallbaum

Thermal insulation material is an important component to reduce the environmental impact of buildings through the reduction of energy consumption in the operation phase. However, the material itself has embodied environmental impacts for the value it provides. Eco-efficiency is a method that quantifies relation between the environmental performance and the created value of a product system. This study investigated contributing factors of the eco-efficiency of thermal insulation materials to support decision making of material manufacturers. For the improvement of eco-efficiency, the assessment was made in two scopes: investigating the contributing factors of impact caused at production processes; and thermal performance through thermo-physical properties. For quantifying environmental impacts, cradle-to-grave life cycle assessment (LCA) of each materials were made. The life cycle impact assessment (LCIA) indicators used were ReCiPe H/A and global warming potential (GWP100a). For the assessment of production process, the inventories of the materials were assigned to six categories: heat, chemicals, electricity, transportation, raw materials and wastes. Among the assessed materials, contribution of electricity and heat within the production process was large for foam glass which had the highest potential to improve the eco-efficiency which was by factor 1.72. The analysis on relation between thermo-physical properties and eco-efficiency based on product data of the materials highlighted the importance of density as an indicator upon development and use. Althoughdensity often gains less attention,the finding suggested the effectiveness of improving the efficiency by having lower density without compensating the performance of the materials.


2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković

In order to demonstrate the environmental impact of the increased flow of thermal insulation materials and facade joinery with improved thermal characteristics, the analysis of the carbon footprint for two scenarios for the needs of the research was done as a consequence of the new regulations on the energy efficiency of the facilities. For each of the analyzed scenarios, a project and an overview of works on the basis of which quantities of construction materials, activities and processes that participate in the construction of the analyzed scenarios were calculated (S1 and S2), were made. The reference object (S1) is designed without thermal insulation layers, the energy class „G“, and the scenario (S2) is designed in the energy class „C“, which according to the new regulations is a condition for the construction of new facilities. The study uses the Life Cycle Analysis (LCA), a methodology that is the basis for Carbon Lifecycle Analysis (LCACO2), or calculation of the carbon footprint of the facility. Construction carbon calculator, Environmental Protection Agency UK, is used to calculate the carbon footprint, and for the calculation of operational energy, the URSA Construction Physics 2 program. The study showed that the embodied carbon for the scenario (S1) is 138,40 tonnes CO2 e, with less impact on the environment. The higher values of the embodied carbon have a scenario (S2) of 148,20 tonnes CO2 e. The carbon imprint from the phase of construction, or less impact on the environment, has a scenario (S1). However, after ten years of using the facility, the scenario (S1) due to the larger carbon footprint from the operational phase becomes a scenario with a higher environmental impact, with a total carbon footprint of 186,16 tonnes CO2 e, and the scenario (S2) after ten years of use of the facility has a total carbon footprint of 163,86 tonnes CO2 e. The scenario (S1) and (S2) achieve the same values of the total carbon footprint after 3,05 years of use of the facility and (S2) has since then become a better choice from the aspect of the environment. The research has shown that the embodied carbon is neglected in the calculation of the environmental impact of the facility, as well as the average when the benefits can be expected from the application of measures for energy-efficient buildings. The research also points to the need for low-carbon thermal insulation materials to bridge the gap between the demand for the extinguishing of buildings on the one hand and the efforts to reduce greenhouse gas emissions to mitigate climate change.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


2018 ◽  
Vol 927 ◽  
pp. 176-182
Author(s):  
Polina A. Tretiakova ◽  
O.A. Stepanov ◽  
T.V. Tretyakova

the article describes and compares thermal insulation materials used for heat insulation of a process pipeline transporting natural gas after its pressure reduction. The following thermal insulation materials are examined: mineral wool and cellular rubber substance. Linear thermal resistance has been chosen as the essential property of the materials.


Sign in / Sign up

Export Citation Format

Share Document