scholarly journals Land Use and Land Cover Change Detection Using Remote Geospatial Techniques: A Case Study of an Urban City in Southwestern, Nigeria

2021 ◽  
Vol 21(36) (2) ◽  
pp. 4-14
Author(s):  
Adenike Olayungbo

Many cities in developing countries are experiencing ecosystem modification and change. Today, about 10 million hectares of the world’s forest cover have been converted to other land uses. In Nigeria, there is an estimated increase of 8.75 million ha of cropland and decrease of about 1.71 million ha of forest cover between 1995 to 2020, indicating that Nigeria has been undergoing a wide range of land use and land cover changes. This paper analyses the changes in land use/cover in Ila Orangun, Southwestern, Nigeria from 1986 to 2018, with a view to providing adequate information on the pattern and trend of land use and land cover changes for proper monitoring and effective planning. The study utilized satellite images from Landsat 1986, 2002 and 2018. Remote sensing and Geographical Information System techniques as well as supervised image classification method were used to assess the magnitude of changes in the city over the study period. The results show that 26.36% of forest cover and 44.48% of waterbody were lost between the period of 1986 and 2018. There was a rapid increase in crop land by 365.7% and gradual increase in built-up areas by 103.85% at an annual rate of 3.25%. Forest was the only land cover type that recorded a constant reduction in areal extent. The study concluded that the changes in land use and land cover is a result of anthropogenic activities in the study area.

2018 ◽  
Vol 10 (12) ◽  
pp. 4631 ◽  
Author(s):  
Biswajit Nath ◽  
Zheng Niu ◽  
Ramesh Singh

Understanding of the Land Use and Land Cover (LULC) change, its transitions and Landscape risk (LR) evaluation in earthquake-affected areas is important for planning and urban sustainability. In the present study, we have considered Dujiangyan City and its Environs (DCEN), a seismic-prone area close to the 2008 Wenchuan earthquake (8.0 Mw) during 2007–2018. Five different multi-temporal data sets for the years 2007, 2008, 2010, 2015, and 2018 were considered for LULC mapping, followed by the maximum likelihood supervised classification technique. The individual LULC maps were further used in four time periods, i.e., 2007–2018, 2008–2018, 2010–2018, and 2015–2018, to evaluate the Land Use and Land Cover Transitions (LULCT) using combined remote sensing and GIS (Geographical Information System). Furthermore, multi-criteria evaluation (MCE) techniques were applied for LR mapping. The results of the LULC change data indicate that built-up, agricultural area, and forest cover are the prime categories that had been changed by the natural and anthropogenic activities. LULCT, along with multi-parameters, are suggested to avoid development in fault-existing areas that are seismically vulnerable for future landscape planning in a sustainable manner.


Forest cover in Bengkulu is reduced. Data from WARSI shows, 1990 forest cover areas in the province are approximately 1,009,209 hectares or 50.4 % of the land area reaching 1,979,515 hectares. But now, it is only 685,762 hectares of the area of his blood. That is, the period of 25 years, there is a forest cover decline of 323,447 hectares. Forest and land cover changes are the largest contributor to greenhouse gas emissions. The purpose of this article is to see land cover changes based on carbon stock in the years 2009 and 2018. Model of land cover change based on carbon stock year 2028 and 2038. The method of this research uses the calculation of the Stock Difference Approach with spatial analysis of national land closure of Landsat imagery 2009-2018 and biomass data for forest inventory results Geographic Information System (GIS). The results of this research were the reduced forest area and the change in land use changed from 2009 and 2018. So carbon stock is also increasingly reduced.


2017 ◽  
Vol 63 (No. 6) ◽  
pp. 245-253 ◽  
Author(s):  
Khaleghi Mohammad Reza

In recent decades, due to rapid human population increases and in its results, destructive effects of anthropogenic activities on natural resources have become a great challenge. Land use and vegetation are important factors in soil erosion and runoff generation. This study was performed to assess the effects of different amounts of forest cover on the control of runoff and soil loss in the Talar basin, which is located in Mazandaran province, using a runoffrainfall model, geographical information system (GIS) and remote sensing (RS) to determine the hydrologic effects of deforestation on the Talar watershed (north of Iran). A runoff-rainfall model has been presented using GIS (HECGeoHMS) and hydrologic model (HEC-HMS). Land use changes (deforestation) and anthropogenic activities (roads and impervious surfaces development) were evaluated using RS techniques and satellite images. We used the Soil Conservation Service and Curve Number methods for hydrograph simulation and runoff estimation, respectively. First, a model was performed and optimized. Afterward, the optimized model was evaluated by other six events of floods (model validation). According to the obtained results, the runoff generation potential has been increased in the Talar watershed due to deforestation during the last forty years. Land use changes cause an increase in runoff volume and flood peak discharge.


2021 ◽  
Author(s):  
Nde Samuel Che ◽  
Sammy Bett ◽  
Enyioma Chimaijem Okpara ◽  
Peter Oluwadamilare Olagbaju ◽  
Omolola Esther Fayemi ◽  
...  

The degradation of surface water by anthropogenic activities is a global phenomenon. Surface water in the upper Crocodile River has been deteriorating over the past few decades by increased anthropogenic land use and land cover changes as areas of non-point sources of contamination. This study aimed to assess the spatial variation of physicochemical parameters and potentially toxic elements (PTEs) contamination in the Crocodile River influenced by land use and land cover change. 12 surface water samplings were collected every quarter from April 2017 to July 2018 and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). Landsat and Spot images for the period of 1999–2009 - 2018 were used for land use and land cover change detection for the upper Crocodile River catchment. Supervised approach with maximum likelihood classifier was used for the classification and generation of LULC maps for the selected periods. The results of the surface water concentrations of PTEs in the river are presented in order of abundance from Mn in October 2017 (0.34 mg/L), followed by Cu in July 2017 (0,21 mg/L), Fe in April 2017 (0,07 mg/L), Al in July 2017 (0.07 mg/L), while Zn in April 2017, October 2017 and April 2018 (0.05 mg/L). The concentrations of PTEs from water analysis reveal that Al, (0.04 mg/L), Mn (0.19 mg/L) and Fe (0.14 mg/L) exceeded the stipulated permissible threshold limit of DWAF (< 0.005 mg/L, 0.18 mg/L and 0.1 mg/L) respectively for aquatic environments. The values for Mn (0.19 mg/L) exceeded the permissible threshold limit of the US-EPA of 0.05 compromising the water quality trait expected to be good. Seasonal analysis of the PTEs concentrations in the river was significant (p > 0.05) between the wet season and the dry season. The spatial distribution of physicochemical parameters and PTEs were strongly correlated (p > 0.05) being influenced by different land use type along the river. Analysis of change detection suggests that; grassland, cropland and water bodies exhibited an increase of 26 612, 17 578 and 1 411 ha respectively, with land cover change of 23.42%, 15.05% and 1.18% respectively spanning from 1999 to 2018. Bare land and built-up declined from 1999 to 2018, with a net change of - 42 938 and − 2 663 ha respectively witnessing a land cover change of −36.81% and − 2.29% respectively from 1999 to 2018. In terms of the area under each land use and land cover change category observed within the chosen period, most significant annual change was observed in cropland (2.2%) between 1999 to 2009. Water bodies also increased by 0.1% between 1999 to 2009 and 2009 to 2018 respectively. Built-up and grassland witness an annual change rate in land use and land cover change category only between 2009 to 2018 of 0.1% and 2.7% respectively. This underscores a massive transformation driven by anthropogenic activities given rise to environmental issues in the Crocodile River catchment.


2020 ◽  
Vol 62 (4) ◽  
pp. 288-305
Author(s):  
Addo Koranteng ◽  
Isaac Adu-Poku ◽  
Emmanuel Donkor ◽  
Tomasz Zawiła-Niedźwiecki

AbstractLand use and land cover (LULC) terrain in Ghana has undergone profound changes over the past years emanating mainly from anthropogenic activities, which have impacted countrywide and sub-regional environment. This study is a comprehensive analysis via integrated approach of geospatial procedures such as Remote Sensing (RS) and Geographic Information System (GIS) of past, present and future LULC from satellite imagery covering Ghana’s Ashanti regional capital (Kumasi) and surrounding districts. Multi-temporal satellite imagery data sets of four different years, 1990 (Landsat TM), 2000 (Landsat ETM+), 2010 (Alos and Disaster Monitoring Constellation-DMC) and 2020 (SENTINEL), spanning over a 30-year period were mapped. Five major LULC categories – Closed Forest, Open Forest, Agriculture, Built-up and Water – were delineated premised on the prevailing geographical settings, field study and remote sensing data. Markov Cellular Automata modelling was applied to predict the probable LULC change consequence for the next 20 years (2040). The study revealed that both Open Forest and Agriculture class categories decreased 51.98 to 38.82 and 27.48 to 20.11, respectively. Meanwhile, Built-up class increased from 4.8% to 24.8% (over 500% increment from 1990 to 2020). Rapid urbanization caused the depletion of forest cover and conversion of farmlands into human settlements. The 2040 forecast map showed an upward increment in the Built-up area up to 35.2% at the expense of other LULC class categories. This trend from the past to the forecasted future would demand that judicious LULC resolutions have to be made to keep Ghana’s forest cover, provide arable land for farming activities and alleviate the effects of climate change.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 286 ◽  
Author(s):  
Philip Antwi-Agyei ◽  
Felix Kpenekuu ◽  
Jonathan N. Hogarh ◽  
Kwasi Obiri-Danso ◽  
Robert C. Abaidoo ◽  
...  

Reservoir catchments in Ghana have undergone significant changes in recent years with major implications for socio-economic development and local livelihoods. We studied land use and land cover changes and their impacts on livelihoods in the Owabi reservoir catchment from 1970 to 2014 using Landsat, ERDAS Imagine and Arc Geographic Information System (ArcGIS 10.2) software supplemented with participatory approaches including focus group discussions, key informant interviews and questionnaire surveys with 400 households. Our results showed that, since 1970, 24.6% of high-density forests and 15.8% of sparse forests have disappeared, while the built-up area has increased from 9.8% to 56.6%. Additionally, the proportion of bare soil (areas that do not have vegetation cover due to forest clearing and other anthropogenic activities) has increased, while the areas of waterbodies have declined. We identified urbanisation and lack of community involvement in catchment management as the key factors driving the land cover changes that have adversely affected the livelihoods of the local fringe communities. This study highlights the threats from urbanisation to land cover changes and identifies the key drivers of land use change. For effective and sustainable management of natural resources, the local communities should be more actively involved in the decision-making process regarding the management of their individual catchments.


2020 ◽  
Vol 12 (9) ◽  
pp. 3925 ◽  
Author(s):  
Sonam Wangyel Wang ◽  
Belay Manjur Gebru ◽  
Munkhnasan Lamchin ◽  
Rijan Bhakta Kayastha ◽  
Woo-Kyun Lee

Understanding land use and land cover changes has become a necessity in managing and monitoring natural resources and development especially urban planning. Remote sensing and geographical information systems are proven tools for assessing land use and land cover changes that help planners to advance sustainability. Our study used remote sensing and geographical information system to detect and predict land use and land cover changes in one of the world’s most vulnerable and rapidly growing city of Kathmandu in Nepal. We found that over a period of 20 years (from 1990 to 2010), the Kathmandu district has lost 9.28% of its forests, 9.80% of its agricultural land and 77% of its water bodies. Significant amounts of these losses have been absorbed by the expanding urbanized areas, which has gained 52.47% of land. Predictions of land use and land cover change trends for 2030 show worsening trends with forest, agriculture and water bodies to decrease by an additional 14.43%, 16.67% and 25.83%, respectively. The highest gain in 2030 is predicted for urbanized areas at 18.55%. Rapid urbanization—coupled with lack of proper planning and high rural-urban migration—is the key driver of these changes. These changes are associated with loss of ecosystem services which will negatively impact human wellbeing in the city. We recommend city planners to mainstream ecosystem-based adaptation and mitigation into urban plans supported by strong policy and funds.


2019 ◽  
Vol 12 (1-2) ◽  
pp. 41-50 ◽  
Author(s):  
Eniola Damilola Ashaolu ◽  
Jacob Funso Olorunfemi ◽  
Ifatokun Paul Ifabiyi

Abstract Over the years, Osun drainage basin has witnessed tremendous increase in population, and urbanization that have changed the landscape of the area. This study evaluated the spatio-temporal pattern of land use/land cover change (LULC) in the study area, and made hydrological inferences. Landsat imageries were acquired from USGS-EROS satellite image database for the period 1984, 2000 and 2015, while the Digital Elevation Model (DEM) was obtained from Shuttle Radar Topography Mission (SRTM) of the National Aeronautics and Space Agency (NASA). Supervised image classification using the Maximum Likelihood Algorithm in Erdas Imagine was adopted to classified the land use/land cover of the study area into seven classes. Elevation, aspect and slope of the study area were processed from DEM using ArcGIS. Modules for Land Use Change Evaluation (MOLUSCE) plugin in QGIS was used to simulate the basin future LULC change, using change driving factors of population, elevation, aspect and slope of the study area. There was about 234% increase in built up areas and 89.22% in crop/shrubs between 1984 and 2015. The most significant decrease in LULC occurred in forest (58.75%) and wetland (84.69%) during this period. The predicted future LULC change suggests that only about 12% of the basin will remain under forest cover by the year 2046. The results underscored the increasing anthropogenic activities in the basin that influenced recharge rate, surface runoff, incidences of soil erosion, etc., in Osun drainage basin. The planting of the lost native trees was recommended for the sustainability of the basin’s ecosystem.


2021 ◽  
Vol 25 (7) ◽  
pp. 1257-1262
Author(s):  
E.O. Toyinbo ◽  
R.A. Fasasi ◽  
C.F. Agbor ◽  
C.O. Fakorede

Mankind’s existence and modification of the landscape have had a profound effect on the natural environment. Anthropogenic activities such as agriculture, mining, deforestation and construction have influenced the shifting patterns of land use. This has resulted in a significant effect on local weather and climate. The use of remote sensing data in recent times has been of immense help in monitoring the changing pattern of vegetation. Therefore this study utilized remote sensing and geographic information system (GIS) methods to identify factors responsible for land use land cover (LULC) changes in Oluwa Forest Reserve between 1984 and 2017. The result showed that Primary forest was reduced by about 5% between 1984 and 2000 and by about 12% between 2000 and 2017 and the non-forest got increased by about 4% and 2% from 1984 to 2000 and from 2000 to 2017 respectively. Future forecast shows that primary forest will decrease by about 3% while the non-forest will increase by 5% by 2034. The results also revealed that the changes in forest cover between 2000 and 2017 were actively influenced by the closeness of settlements to the forest. It is therefore recommended that the findings of this study should be adopted by relevant authorities as a useful forest management tool.


2014 ◽  
Vol 7 (2) ◽  
pp. 25-44 ◽  
Author(s):  
Oluwagbenga O. I. Orimoogunje

Abstract This study examined the extent of resource use and the level of degradation consequent upon land use. Three distinctive trends were observed in terms of forest and land cover dynamics. These are forest degradation, deforestation and regeneration. The paper integrated both, topographical map of 1969 and satellite imageries from Landsat MSS 1972, and Landsat TM 1991 and 2000 with ground truthing and socio-economic surveys to assess changes in forest resource use and land cover in South-western Nigeria. The satellite images were analysed using ILWIS software version 3.4. Based on ground truth data and remotely sensed data, the study area was classified into five categories using the supervised maximum likelihood classification technique. The accuracy assessment was carried out on the remotely sensed data. A total of 30 points for each dataset were selected for this operation and the overall accuracy of 90%, 86.7% and 85% respectively was obtained from the three image datasets. Results showed three dominant ecological communities in Oluwa Forest Reserve while two effects of changes on species were identified. The first was the replacement of what could be considered as the original species by other species tolerant to the ‘new’ ecosystem. The other was the reduction in the range of the original species that could be found. This was an indication that the area had been fragmented comparing to its original status. Results suggest that resource utilization and land cover change dynamically over time. The study also revealed that the creation of forest reserve to restrict local access and resource use would have been an effective tool for regulating encroachment and logging activities if there was an effective enforcement of regulation. It is therefore obvious that the main aim of environmental management should be the protection of the natural living space of humankind and integration of environmental scarcity in making decision on all economic issues and activities.


Sign in / Sign up

Export Citation Format

Share Document