scholarly journals Overexpression of sgm 5’ UTR mRNA reduces gentamicin resistance in both Escherichia coli and Micromonospora melanosporea cells

2007 ◽  
Vol 59 (4) ◽  
pp. 273-280
Author(s):  
M. Kojic ◽  
Sandra Vojnovic ◽  
Natasa Vukov ◽  
Branka Vasiljevic

The 16S rRNA methylases are expressed by most of the antibiotic producing bacteria in order to protect themselves against antibiotics by methylation of 16S rRNA at positions which are crucial for their action. The sgm sisomicin-gentamicin resistance gene from Micromonospora zionensis methylates G1405 positioned in the A site of 16S rRNA, which includes a CCGCCC hexanucleotide. The same hexanucleotide is also present 14 nucleotides in front of the ribosome binding site of sgm mRNA. The model proposed for translational regulation of sgm assumes that Sgm binds to this motif, both on 16S rRNA and on the 5? untranslated region (UTR) of its own mRNA. The 5? UTR mRNA sequence was overexpressed on 3?-truncated sgm mRNA, and the effect on gentamicin resistance conferred by Sgm was tested in Escherichia coli and in Micromonospora melanosporea. Overexpression of the sgm mRNA regulatory region decreases the resistance to gentamicin in both E. coli and M. melanosporea. This effect is likely to be due to titration of Sgm molecules by the overexpressed 5? UTR.

2007 ◽  
Vol 51 (12) ◽  
pp. 4401-4409 ◽  
Author(s):  
Jun-ichi Wachino ◽  
Keigo Shibayama ◽  
Hiroshi Kurokawa ◽  
Kouji Kimura ◽  
Kunikazu Yamane ◽  
...  

ABSTRACT We have isolated a multiple-aminoglycoside-resistant Escherichia coli strain, strain ARS3, and have been the first to identify a novel plasmid-mediated 16S rRNA methyltransferase, NpmA. This new enzyme shared a relatively low level of identity (30%) to the chromosomally encoded 16S rRNA methyltransferase (KamA) of Streptomyces tenjimariensis, an actinomycete aminoglycoside producer. The introduction of a recombinant plasmid carrying npmA could confer on E. coli consistent resistance to both 4,6-disubstituted 2-deoxystreptamines, such as amikacin and gentamicin, and 4,5-disubstituted 2-deoxystreptamines, including neomycin and ribostamycin. The histidine-tagged NpmA elucidated methyltransferase activity against 30S ribosomal subunits but not against 50S subunits and the naked 16S rRNA molecule in vitro. We further confirmed that NpmA is an adenine N-1 methyltransferase specific for the A1408 position at the A site of 16S rRNA. Drug footprinting data indicated that binding of aminoglycosides to the target site was apparently interrupted by methylation at the A1408 position. These observations demonstrate that NpmA is a novel plasmid-mediated 16S rRNA methyltransferase that provides a panaminoglycoside-resistant nature through interference with the binding of aminoglycosides toward the A site of 16S rRNA through N-1 methylation at position A1408.


2019 ◽  
Vol 47 (2) ◽  
pp. 671-677
Author(s):  
Anna Lankester ◽  
Shafayeth Ahmed ◽  
Lisa E. Lamberte ◽  
Rachel A. Kettles ◽  
David C. Grainger

AbstractIn Escherichia coli, the marRAB operon is a determinant for antibiotic resistance. Such phenotypes require the encoded transcription factor MarA that activates efflux pump expression. To better understand all genes controlled by MarA, we recently mapped binding of the regulator across the E. coli genome. As expected, many MarA targets were adjacent to genes encoding stress response systems. Surprisingly, one MarA-binding site overlapped the lac operon regulatory region. Here, we show that MarA specifically targets this locus and can block transcription of the lac genes. Repression is mediated by binding of MarA to a site overlapping the lacP1 promoter −35 element. Control of the lac operon by MarA does not impact antibiotic resistance.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 1055-1059 ◽  
Author(s):  
Irina Groisman ◽  
Hanna Engelberg-Kulka

The translation of the genetic code, once thought to be rigid, has been found to be quite flexible, and several alternatives in its reading have been described. An unusual alternative is translational bypassing, a frameshift event where the transition from frame 0 to another frame occurs by translational bypassing of an extended region of the mRNA sequence rather than by slippage past a single nucleotide, as has been described for most examples of frameshifting. Translational bypassing has been characterized in two cases, T4 gene 60 coding for a topoisomerase subunit and in a trpR–lac′Z fusion. The latter was discovered in our laboratory, and the unique bypass mechanism is investigated further in this study. Using a trpR+1–lac′Z fusion system, we show that the Gln codon at the beginning of lacZ end at the 3′ side of the gap is required for bypassing to occur. The Gln codon is part of an mRNA segment that can (potentially) base pair with a segment at the 5′ and of Escherichia coli 16S rRNA. A model of trpR+1–lac′Z bypassing is suggested in which the untranslated region of the mRNA is looped out through base pairing between a segment in the 5′ end of the 16S rRNA and two sites in the mRNA. Translational bypassing is a newly discovered mechanism of gene expression, and trpR is the first cellular gene identified in which such a mechanism could operate. The understanding of this mechanism and its associated signals may be considered a paradigm for the expression of other genes by this alternative reading of the genetic code.Key words: genetic code, translation, frameshifting, trpR.


Author(s):  
Akito Kawai ◽  
Masahiro Suzuki ◽  
Kentaro Tsukamoto ◽  
Yusuke Minato ◽  
Yohei Doi

Post-translational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such function. Here, we present function and structure of NpmB1 whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single amino acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


1993 ◽  
Vol 296 (3) ◽  
pp. 851-857 ◽  
Author(s):  
T Belyaeva ◽  
L Griffiths ◽  
S Minchin ◽  
J Cole ◽  
S Busby

The Escherichia coli cysG promoter has been subcloned and shown to function constitutively in a range of different growth conditions. Point mutations identify the -10 hexamer and an important 5′-TGN-3′ motif immediately upstream. The effects of different deletions suggest that specific sequences in the -35 region are not essential for the activity of this promoter in vivo. This conclusion was confirmed by in vitro run-off transcription assays. The DNAase I footprint of RNA polymerase at the cysG promoter reveals extended protection upstream of the transcript start, and studies with potassium permanganate as a probe suggest that the upstream region is distorted in open complexes. Taken together, the results show that the cysG promoter belongs to the ‘extended -10’ class of promoters, and the base sequence is similar to that of the P1 promoter of the E. coli galactose operon, another promoter in this class. In vivo, messenger initiated at the cysG promoter appears to be processed by cleavage at a site 41 bases downstream from the transcript start point.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


2020 ◽  
Vol 6 (6) ◽  
pp. eaax0947 ◽  
Author(s):  
J. Mark Kim ◽  
Mayra Garcia-Alcala ◽  
Enrique Balleza ◽  
Philippe Cluzel

The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise “on” and “off” states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Sonisilpa Mohapatra ◽  
Heejun Choi ◽  
Xueliang Ge ◽  
Suparna Sanyal ◽  
James C. Weisshaar

ABSTRACT In vitro assays find that ribosomes form peptide bonds to proline (Pro) residues more slowly than to other residues. Ribosome profiling shows that stalling at Pro-Pro-X triplets is especially severe but is largely alleviated in Escherichia coli by the action of elongation factor EF-P. EF-P and its eukaryotic/archaeal homolog IF5A enhance the peptidyl transfer step of elongation. Here, a superresolution fluorescence localization and tracking study of EF-P–mEos2 in live E. coli provides the first in vivo information about the spatial distribution and on-off binding kinetics of EF-P. Fast imaging at 2 ms/frame helps to distinguish ribosome-bound (slowly diffusing) EF-P from free (rapidly diffusing) EF-P. Wild-type EF-P exhibits a three-peaked axial spatial distribution similar to that of ribosomes, indicating substantial binding. The mutant EF-PK34A exhibits a homogeneous distribution, indicating little or no binding. Some 30% of EF-P copies are bound to ribosomes at a given time. Two-state modeling and copy number estimates indicate that EF-P binds to 70S ribosomes during 25 to 100% of translation cycles. The timescale of the typical diffusive search by free EF-P for a ribosome-binding site is τfree ≈ 16 ms. The typical residence time of an EF-P on the ribosome is very short, τbound ≈ 7 ms. Evidently, EF-P binds to ribosomes during many or most elongation cycles, much more often than the frequency of Pro-Pro motifs. Emptying of the E site during part of the cycle is consistent with recent in vitro experiments indicating dissociation of the deacylated tRNA upon translocation. IMPORTANCE Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle. Ribosomes translate the codon sequence within mRNA into the corresponding sequence of amino acids within the nascent polypeptide chain, which in turn ultimately folds into functional protein. At each codon, bacterial ribosomes are assisted by two well-known elongation factors: EF-Tu, which aids binding of the correct aminoacyl-tRNA to the ribosome, and EF-G, which promotes tRNA translocation after formation of the new peptide bond. A third factor, EF-P, has been shown to alleviate ribosomal pausing at rare Pro-Pro motifs, which are translated very slowly without EF-P. Here, we use superresolution fluorescence imaging to study the spatial distribution and ribosome-binding dynamics of EF-P in live E. coli cells. We were surprised to learn that EF-P binds to and unbinds from translating ribosomes during at least 25% of all elongation events; it may bind during every elongation cycle.


2007 ◽  
Vol 189 (23) ◽  
pp. 8510-8518 ◽  
Author(s):  
Koichi Inoue ◽  
Soumit Basu ◽  
Masayori Inouye

ABSTRACT A 16S rRNA methyltransferase, KsgA, identified originally in Escherichia coli is highly conserved in all living cells, from bacteria to humans. KsgA orthologs in eukaryotes possess functions in addition to their rRNA methyltransferase activity. E. coli Era is an essential GTP-binding protein. We recently observed that KsgA functions as a multicopy suppressor for the cold-sensitive cell growth of an era mutant [Era(E200K)] strain (Q. Lu and M. Inouye, J. Bacteriol. 180:5243-5246, 1998). Here we observed that although KsgA(E43A), KsgA(G47A), and KsgA(E66A) mutations located in the S-adenosylmethionine-binding motifs severely reduced its methyltransferase activity, these mutations retained the ability to suppress the growth defect of the Era(E200K) strain at a low temperature. On the other hand, a KsgA(R248A) mutation at the C-terminal domain that does not affect the methyltransferase activity failed to suppress the growth defect. Surprisingly, E. coli cells overexpressing wild-type KsgA, but not KsgA(R248A), were found to be highly sensitive to acetate even at neutral pH. Such growth inhibition also was observed in the presence of other weak organic acids, such as propionate and benzoate. These chemicals are known to be highly toxic at acidic pH by lowering the intracellular pH. We found that KsgA-induced cells had increased sensitivity to extreme acid conditions (pH 3.0) compared to that of noninduced cells. These results suggest that E. coli KsgA, in addition to its methyltransferase activity, has another unidentified function that plays a role in the suppression of the cold-sensitive phenotype of the Era(E200K) strain and that the additional function may be involved in the acid shock response. We discuss a possible mechanism of the KsgA-induced acid-sensitive phenotype.


2007 ◽  
Vol 75 (7) ◽  
pp. 3315-3324 ◽  
Author(s):  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Regino Mercado-Lubo ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


Sign in / Sign up

Export Citation Format

Share Document