scholarly journals Exploring phenotypic floral integration in Iris pumila L.: A common-garden experiment

2013 ◽  
Vol 65 (2) ◽  
pp. 781-793 ◽  
Author(s):  
Branka Tucic ◽  
Ana Vuleta ◽  
Sanja Manitasevic-Jovanovic

The angiosperm flower is a complex integrated phenotype, but within this structure there are partly independent units or modules. The interconnections among floral organ traits are hypothesized to be mostly generated by pollinatormediated selection. In this study, we explore whether floral dry mass per area (DMA) in an insect-pollinated herb, Iris pumila, exhibits a modular correlation pattern as has been reported for some size-related traits. We found that the overall pattern of floral organ integration with regard to DMA was uneven in the offspring of Iris pumila derived from a sunexposed and a shaded natural population. Since principal component analysis (PCA) showed that most of the eigenvalue variance was explained by the first two principal components (PCs), these PCs were considered as two floral modules. The greatest factor loadings on the first PC axis was that of the perianth and style arm DMA (PSDMA) and perianth tube DMA (PTDMA),while on the second PC axis, the greatest factor loading was that of stamen DMA (STDMA). The results indicate that the function of the first module would be to attract a pollinating vector, while the second one would reflect male functions. Selection analyses revealed that the targets of phenotypic selection were both intra-floral integration and individual floral traits. Both PSDMA and PC1DMA were under strong linear selection, while PTDMA experienced direct stabilization selection. The level of integration in floral organ DMA expressed in the term of relative eigenvalue variance appeared to be rather low, as was documented for other angiosperm taxa.

2022 ◽  
Author(s):  
Laura Morales ◽  
Kelly Swarts

We leveraged publicly available data on juvenile tree height of 299 Central European Norway spruce populations grown in a common garden experiment across 24 diverse trial locations in Austria and weather data from the trial locations and population provenances to parse the heritable and climatic components of tree height variation. Principal component analysis of geospatial and weather variables demonstrated high interannual variation among trial environments, largely driven by differences in precipitation, and separation of population provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and genetic variation for tree height was strongly associated with climatic relationships among population provenances. Modeling the covariance between populations and trial environments based on climatic data increased the heritable signal for tree height.


2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.


2018 ◽  
Vol 7 (4.34) ◽  
pp. 97
Author(s):  
Mohamad Razali Abdullah ◽  
Hafizan Juahir ◽  
N. Mohamad Shukri ◽  
N. A. Fuat ◽  
N. A. Mohd Ros ◽  
...  

This study develops an Athlete Performance Capabilities Index (APCI) model using multivariate analysis for selecting the best player of under twelve (U12).  Measurement of anthropometrics and physical fitness were evaluated among 178 male players aged 12±0.52 years. Factor score derived by Principal Component Analysis were used to obtain a model for APCI and Discriminant Analysis (DA) were conducted to validate the correctness of group classification by APCI. Result was found two factors with eigenvalues greater than 1 were extracted which accounted for 62.00% of the variations present in the original variables. The two factors were used to obtain the factor score coefficients explained by 35.72% and 26.67% of the variations in athlete performance respectively. Factor 1 revealed high factor loading on fitness compared to Factor 2 as it was significantly related to anthropometrics. A model was obtained using standardized coefficient of factor 1. Three clusters of performance were shaped in view by categorizing APCI ≥ 75%, 25% ≤ APCI < 75% and APCI < 25% as high, moderate and low performance group respectively. Three discriminated variables out of thirteen variables were obtained using Forward and Backward stepwise mode of DA, which were weight, standing broad jump, and 40 meters’ speed. Such variables were established as essential indicator for selecting the best player among male U12.   


2018 ◽  
Vol 425 ◽  
pp. 35-44 ◽  
Author(s):  
Timothy J. Albaugh ◽  
Thomas R. Fox ◽  
Chris A. Maier ◽  
Otávio C. Campoe ◽  
Rafael A. Rubilar ◽  
...  

Botany ◽  
2016 ◽  
Vol 94 (3) ◽  
pp. 201-213
Author(s):  
Anselmo Nogueira ◽  
Pedro J. Rey ◽  
Julio M. Alcántara ◽  
Lúcia G. Lohmann

Extra-floral nectaries (EFNs) are thought to represent protective adaptations against herbivory, but studies on the evolutionary ecology of EFNs have seldom been conducted. Here we investigate the patterns of natural selection and genetic variation in EFN traits in two wild populations of Anemopaegma album Mart. ex DC. (Bignoniaceae) that have been previously described as contrasting EFN – ant adapted localities in the Neotropical savanna (Cristália and Grão Mogol). In each population, four EFN descriptors, foliar damage, and reproductive success variables were measured per plant (100–120 plants per population). To estimate the heritability of EFN traits, we crossed reproductive plants in the field, and grew offspring plants in a common garden. The results showed that ant assemblages differed between populations, as did the range of foliar herbivory. Genetic variation and positive phenotypic selection in EFN abundance were only detected in the Cristália population, in which plants with more EFNs were more likely to reproduce. An evaluation of putative causal links conducted by path analysis corroborated the existence of phenotypic selection on EFNs, which was mediated by the herbivory process in the Cristália population. While EFNs could be currently under selection in Cristália, it is possible that past selection may have driven EFN traits to become locally adapted to the local ant assemblage in the Grão Mogol population.


NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


2018 ◽  
Vol 43 (1) ◽  
pp. 153-161
Author(s):  
Scott Zona ◽  
Michael Hass ◽  
Michaela Fickerová ◽  
Sandra Mardonovich ◽  
Kim Sanderford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document