scholarly journals Hydrodynamics of gas-agitated liquid-liquid extraction columns

2012 ◽  
pp. 199-216 ◽  
Author(s):  
Milan Sovilj

Although the non-agitated extraction columns (spray column, packed column, perforated plate column, sieve plate column, etc) can handle high flow rates and are simple and cheap, there have been relatively few applications of these columns because they suffer from serious backmixing of the continuous phase. It was shown that the backmixing is reduced when the spray column is operated with dense packing of drops. Another way of increasing the efficiency of a non-agitated extraction column is to introduce an inert gas (air, nitrogen, oxygen) as a mixing agent in the two-phase liquid-liquid (L-L) system. This method of energy introduction increases the turbulence within the new three-phase gas-liquid-liquid (G-L-L) system, which causes an improved dispersion of droplets, and, consequently, a higher dispersed phase holdup and therefore a great mass transfer area. The present study reports the hydrodynamics in the non-agitated extraction columns, as well as the axial dispersion for the two- and three-phase systems.

2004 ◽  
Vol 69 (7) ◽  
pp. 581-599 ◽  
Author(s):  
Ljubisa Nikolic ◽  
Vesna Nikolic ◽  
Vlada Veljkovic ◽  
Miodrag Lazic ◽  
Dejan Skala

The influence of the gas flow rate and vibration intensity in the presence of the solid phase (polypropylene spheres) on axial mixing of the liquid phase in a three phase (gas-liquid-solid) Karr reciprocating plate column (RPC) was investigated. Assuming that the dispersionmodel of liquid flow could be used for the real situation inside the column, the dispersion coefficient of the liquid phase was determined as a function of different operating parameters. For a two-phase liquid-solid RPC the following correlation was derived: DL = 1.26(Af)1.42 UL 0.51 ?S 0.23 and a similar equation could be applied with ? 30 % confidence for the calculation of axial dispersion in the case of a three-phase RPC: DL = 1.39(Af)0.47 UL0.42UG0.03 ?S -0.26.


1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


2013 ◽  
Vol 316-317 ◽  
pp. 842-845
Author(s):  
Xian Zhong Yi ◽  
Jun Feng Zhang ◽  
Sheng Zong Jiang

Cuttings transport of drilling and washing process in horizontal well is a typical two-phase (liquid-solid) or three-phase (gas-liquid-solid) flow phenomena. In this paper, it analyzes the flow characteristics of Huan 127-Lian H2 horizontal wellbore , then uses experimental method to study the behavior of the particle size distribution and the mechanics. This study provides an important way to master cuttings settling in fluid medium, it can explain how the cuttings bed is generated and cleared, and why the procession of cuttings of migration is stopped. In addition, measurement and analysis of drill cuttings is the basis erosion and abrasion analysis of BHA.


1998 ◽  
Vol 63 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Milan Sovilj

The continuous-phase axial dispersion coefficients of the three-phase gas-liquid-liquid system in a gas-agitated spray extraction column 10 cm i.d. at 20 °C were examined. The system used was water as continuous phase, toluene as dispersed phase, and air as gaseous phase. The rise in the gas phase superficial velocity increased the continuous-phase axial dispersion coefficient. A non-linear dependence between the continuous-phase axial dispersion coefficient and the continuous phase superficial velocity was observed. No correlation was found between the continuous-phase axial dispersion coefficient and dispersed phase superficial velocity. The increase in the gas phase hold-up corresponded to a slight increase in the continuous-phase axial dispersion coefficient. The increase in the dispersed phase hold-up generated a growth of the continuous-phase axial dispersion coefficient. A comparison was made of the continuous-phase axial dispersion coefficients of the three-phase (air-water-toluene) and two-phase (water-toluene) systems.


1983 ◽  
Vol 48 (2) ◽  
pp. 439-448
Author(s):  
Eva Klašková ◽  
Vladimír Rod

Flow rates and mean hold-ups of solids have been measured under the counter-current flow of water in a 50 mm in diameter vibrating perforated plate column. Experimental data have been described by a mathematical model expressing the specific flow rate of solids in dependence on the hold-up, terminal velocity of the particles, porosity of the plate, specific flow rate of the continuous phase and the frequency and amplitude of plate vibrations. It has been found that for systems exhibiting low particle terminal velocity the pumping effect of the plates may increase the flow rate of the dispersed phase to a value corresponding to the flow in the empty column.


1994 ◽  
Vol 59 (10) ◽  
pp. 2235-2243 ◽  
Author(s):  
Milan Sovilj ◽  
Goran Kneževic

The hydrodynamic characteristics of the air water toluene three-phase system in a spray extraction column at 20 °C were examined. The average and local hold-up data of the dispersed phase were determined in dependence on the flow rates of the continuous, dispersed and gaseous phases. The average gas phase hold-up was also measured and analyzed. A comparison was made of the hydrodynamic characteristics of the two-phase (water - toluene) and three-phase (air - water - toluene) systems.


Sign in / Sign up

Export Citation Format

Share Document